scholarly journals In Vivo Transfer of Foreign DNA into Primordial Germ Cells (PGCs) of Chicken Embryos

1999 ◽  
Vol 12 (4) ◽  
pp. 520-524 ◽  
Author(s):  
K. Eguma ◽  
T. Soh ◽  
M. Hattori ◽  
N. Fujihara
2007 ◽  
Vol 44 (4) ◽  
pp. 416-425 ◽  
Author(s):  
Mitsuru Naito ◽  
Takeo Minematsu ◽  
Takashi Harumi ◽  
Takashi Kuwana

Development ◽  
1978 ◽  
Vol 46 (1) ◽  
pp. 119-133
Author(s):  
Janet Heasman ◽  
C. C. Wylie

Primordial germ cells (PGCs) of Xenopus laevis have been isolated from early embryos and kept alive in vitro, in order to study the structural basis of their motility, using the transmission and scanning electron microscope. The culture conditions used mimicked as closely as possible the in vivo environment of migrating PGCs, in that isolated PGCs were seeded onto monolayers of amphibian mesentery cells. In these conditions we have demonstrated that: (a) No significant differences were found between the morphology of PGCs in vitro and in vivo. (b) Structural features involved in PGC movement in vitro include (i) the presence of a filamentous substructure, (ii) filopodial and blunt cell processes, (iii) cell surface specializations. These features are also characteristic of migratory PGCs studied in vivo. (c) PGCs in vitro have powers of invasion similar to those of migrating PGCs in vivo. They occasionally become completely surrounded by cells of the monolayer and, in this situation, bear striking resemblance to PGCs moving between mesentery cells to the site of the developing gonad in stage-44 tadpoles. We conclude that as far as it is possible to assess, the behaviour of isolated PGCs in these in vitro conditions mimics their activities in vivo. This allows us to study the ultrastructural basis of their migration.


Development ◽  
1995 ◽  
Vol 121 (11) ◽  
pp. 3495-3503 ◽  
Author(s):  
M.K. Jaglarz ◽  
K.R. Howard

We describe our analysis of primordial germ cell migration in Drosophila wild-type and mutant embryos using high resolution microscopy and primary culture in vitro. During migratory events the germ cells form transient interactions with each other and surrounding somatic cells. Both in vivo and in vitro they extend pseudopodia and the accompanying changes in the cytoskeleton suggest that actin polymerization drives these movements. These cellular events occur from the end of the blastoderm stage and are regulated by environmental cues. We show that the vital transepithelial migration allowing exit from the gut primordium and passage into the interior of the embryo is facilitated by changes in the structure of this epithelium. Migrating germ cells extend processes in different directions. This phenomenon also occurs in primary culture where the cells move in an unoriented fashion at substratum concentration-dependent rates. In vivo this migration is oriented leading germ cells to the gonadal mesoderm. We suggest that this guidance involves stabilization of states of an intrinsic cellular oscillator resulting in cell polarization and oriented movement.


2008 ◽  
Vol 20 (8) ◽  
pp. 900 ◽  
Author(s):  
Yoshiaki Nakamura ◽  
Yasuhiro Yamamoto ◽  
Fumitake Usui ◽  
Yusuke Atsumi ◽  
Yohei Ito ◽  
...  

The aim of the present study was to improve the efficiency of endogenous primordial germ cell (PGC) depletion and to increase the ratio of donor PGCs in the gonads of recipient chicken embryos. A sustained-release emulsion was prepared by emulsifying equal amounts of Ca2+- and Mg2+-free phosphate-buffered saline containing 10% busulfan solubilised in N,N-dimethylformamide and sesame oil, using a filter. Then, 75 μg per 50 μL busulfan sustained-release emulsion was injected into the yolk. To determine the depletion and repopulation of PGCs in the gonads after 6 days incubation, whole-mount immunostaining was performed. The busulfan sustained-release emulsion significantly reduced the number of endogenous PGCs compared with control (P < 0.05). Moreover, the busulfan sustained-release emulsion significantly depleted endogenous PGCs compared with other previously reported busulfan delivery systems (P < 0.05), but with less variation, suggesting that the sustained-release emulsion delivered a consistent amount of busulfan to the developing chicken embryos. The PGC transfer study showed that the proportion of donor PGCs in the gonads of busulfan sustained-release emulsion-treated embryos after 6 days incubation increased 28-fold compared with control. In conclusion, the results demonstrate that exogenous PGCs are capable of migrating and settling in gonads from which endogenous PGCs have been removed using a busulfan sustained-release emulsion.


2007 ◽  
Vol 19 (1) ◽  
pp. 188
Author(s):  
N. I. Alexopoulos ◽  
N. T. D'Cruz ◽  
P. Maddox-Hyttel

In most animal species, germ cell precursors, i.e., primordial germ cells (PGCs), arise from the epiblast and then migrate to the future gonadal ridge during development. At least in the mouse, PGCs may be cultured as embryonic germ cells that remain pluripotent. PGCs are the only cells in which OCT4 expression is maintained after gastrulation. The present study aimed at identifying the localization of PGCs in Day 21 in vivo-derived bovine embryos by immunohistochemical staining against OCT4. Six embryos were obtained after slaughter of superovulated heifers 21 days after insemination. The uterine tracts were flushed and embryos fixed, paraffin-embedded, and processed for immunohistochemistry. Embryos were sagitally sectioned, and selected serial sections were immunohistochemically stained for OCT4 to identify potential PGCs. Two embryos were at the neural groove stage. At this stage of development, the primitive gut had not yet been abstricted from the yolk sac and the allantois was not visible. A weak homogeneous OCT4 staining was localized to nuclei in a well-defined region of the epiblast, which was in the process of a gradual anterior to posterior differentiation into neural and surface ectoderm. Moreover, a strong OCT4 staining was localized to a few scattered cells found in the visceral mesoderm associated with the yolk sac in the region of the endoderm-hypoblast transition at some distance from the embryo proper. Four embryos were at the neural tube/somite stage. At this stage of development, the primitive gut had been defined and only the midgut was connected to the yolk sac. Furthermore, the allantois was visible as an anchor-shaped structure at the posterior end of the embryo. A strong OCT4 staining was found in nuclei of solitary cells in the endoderm and its associated visceral mesoderm of the ventral aspect of the mid and hindgut. The described OCT4 staining corresponds well with previous findings in the pig, in which presumptive PGCs are found in the endoderm epithelium during the neural groove stage. Later, during the early somite stages, they are localized in the endoderm and visceral mesoderm of the yolk sac and allantois, and in later somite stages, they are found in the developing genital ridge. This is, however, the first study to demonstrate the localization of these cells, at least by OCT4 staining, in bovine embryos at the neural groove and neural tube/somite stages.


2006 ◽  
Vol 95 (1-2) ◽  
pp. 67-74 ◽  
Author(s):  
Jeong M. Lim ◽  
Huck M. Kwon ◽  
Duk K. Kim ◽  
Jin N. Kim ◽  
Tae S. Park ◽  
...  

Biology Open ◽  
2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Yoshikazu Haramoto ◽  
Mino Sakata ◽  
Shin Kobayashi

ABSTRACT X chromosome inactivation (XCI), determined during development, remains stable after embryonic cell divisions. However, primordial germ cells (PGCs) are exceptions in that XCI is reprogrammed and inactivated X chromosomes are reactivated. Although interactions between PGCs and somatic cells are thought to be important for PGC development, little is known about them. Here, we performed imaging of X chromosome reactivation (XCR) using the ‘Momiji’ mouse system, which can monitor the X chromosome's inactive and active states using two color fluorescence reporter genes, and investigated whether interactions would affect XCR in PGCs. Based on their expression levels, we found that XCR of the Pgk1 locus began at embryonic day (E)10.5 and was almost complete by E13.5. During this period, PGCs became distributed uniformly in the genital ridge, proliferated, and formed clusters; XCR progressed accordingly. In addition, XCR of the Pgk1 locus preceded that of the Hprt locus, indicating that the timing of epigenetic memory erasure varied according to the locus of each of these X-linked genes. Our results indicate that XCR proceeds along with the proliferation of PGCs clustered within the genital ridge. This article has an associated First Person interview with the first author of the paper.


Sign in / Sign up

Export Citation Format

Share Document