scholarly journals The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

2015 ◽  
Vol 16 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Furqan Ahmad ◽  
Jung-Wuk Hong ◽  
Heung Soap Choi ◽  
Soo-Jin Park ◽  
Myung Kyun Park
2011 ◽  
Vol 194-196 ◽  
pp. 117-120 ◽  
Author(s):  
Xai Mei Lu ◽  
Yun Fei Ma ◽  
Shi Xun Wang

In this paper, low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures are investigated experimentally and numerically. Low-velocity impact tests and residual tensile strength tests are simulated by the FE (finite element) software, ABAQUS/Explicit and its subroutine (VUMAT). In order to give more detailed description about the impact damage of the structure and improve modeling accuracy, multi-steps analysis method is employed to simulate impact process and residual tensile strength test in one analysis model. The calculation results computed by the FE model have been compared to the value of experiments, the difference of impact process simulation is about 3.3% and that of tensile strength test simulation is about 12.9%. The calculation error of computation model is acceptable, since unavoidable damage could be introduced in the courses of manufacture, processing and transportation of composite materials, and these damages are determinated difficultly in the computation programs. Next, the degradation tendency chart of residual tensile strength and impact energy threshold Uo of carbon fiber composite lattice core sandwich structures are obtained by the computation value of residual tensile strength after impacted with different impact energy. Previously, this threshold can only be obtained by experiment tests. After the contact force which is bigger than the threshold Uo impact on the sandwich structures, the residual tensile strength of structures are degraded greatly. This conclusion is significant for the design and application of carbon fiber composite lattice core sandwich structures.


2011 ◽  
Vol 335-336 ◽  
pp. 226-229
Author(s):  
Lun Wang ◽  
Wan Lin Zhou ◽  
Xue Gang Shi

In this paper, low-velocity impact residual tensile strength of carbon fiber composite laminates are investigated by experiment. The triple-plate-string-element finite element model was used to calculate the strength of repaired structures of the damage. The corresponding strength tests were conducted to verify the computational results. According to the computational and experimental results, the influence of the repair parameters on the repair efficiency was analyzed, such as the overlap length and the thickness of the patch.


2009 ◽  
Vol 79-82 ◽  
pp. 127-130 ◽  
Author(s):  
Shi Xun Wang ◽  
Lin Zhi Wu ◽  
Li Ma

Since composite sandwich structures are susceptible to low-velocity impact damage, a thorough characterization of the loading and damage process during impact is important. In the present paper, the low-velocity impact response of carbon fiber composites lattice structures are investigated by experimental and numerical methods. Impact tests on composite plates are performed using an instrumented drop-weight machine (Instron 9250HV) and a new damage mode is observed. A three-dimensional finite element model is built by ABAQUS/Explicit and user subroutine (VUMAT) to predict the peak loading and simulate the complicated damage problem. It can be found that numerical predictions coincide well with experimental results.


Sign in / Sign up

Export Citation Format

Share Document