Integrated Seismic Stratigraphy and Seismic Geomorphology; Workflows and Techniques

Author(s):  
Henry W. Posamentier
2008 ◽  
Author(s):  
Henry W. Posamentier ◽  
Nicholas Drinkwater ◽  
Julian Clark ◽  
Andrea Fildani ◽  
Tim McHargue ◽  
...  

2011 ◽  
Vol 138-139 ◽  
pp. 447-452 ◽  
Author(s):  
Ru Tai Duan ◽  
Zhen Kui Jin ◽  
Chong Hui Suo

Seismic stratigraphy and seismic geomorphology provides an indication of a carbonate platform’s internal and external architecture. High quality 3D seismic data integrated with wireline logs and core materials furthers detailed depositional element analysis, lithology prediction and diagenetic modification of the stratigraphic section, which help to build a depositional model, sequence stratigraphy framework and enhance the evaluation of the reservoir potential of this unit and a prediction of fluid flow during hydrocarbon production. This study mainly focus on using 3D seismic data calibrated with core and logs from oil field A to characterize the stratigraphy and geomorphology of the depositional elements of the carbonate reservoir (Aptaian Stage) and infer the process of the deposition where appropriate. Integration of seismic data with well data provides the frame work for reconstruction depositional evolution history the reservoir. The high seismic resolution of the A reservoirs also provides useful analogs for other subsurface reservoirs from similar depositional environments.


2013 ◽  
Vol 1 (1) ◽  
pp. SA3-SA20 ◽  
Author(s):  
Bruce S. Hart

Here, I provide an historical summary of seismic stratigraphy and suggest some potential avenues for future collaborative work between sedimentary geologists and geophysicists. Stratigraphic interpretations based on reflection geometry- or shape-based approaches have been used to reconstruct depositional histories and to make qualitative and (sometimes) quantitative predictions of rock physical properties since at least the mid-1970s. This is the seismic stratigraphy that is usually practiced by geology-focused interpreters. First applied to 2D seismic data, interest in seismic stratigraphy was reinvigorated by the development of seismic geomorphology on 3D volumes. This type of reflection geometry/shape-based interpretation strategy is a fairly mature science that includes seismic sequence analysis, seismic facies analysis, reflection character analysis, and seismic geomorphology. Rock property predictions based on seismic stratigraphic interpretations usually are qualitative, and reflection geometries commonly may permit more than one interpretation. Two geophysics-based approaches, practiced for nearly the same length of time as seismic stratigraphy, have yet to gain widespread adoption by geologic interpreters even though they have much potential application. The first is the use of seismic attributes for “feature detection,” i.e., helping interpreters to identify stratigraphic bodies that are not readily detected in conventional amplitude displays. The second involves rock property (lithology, porosity, etc.) predictions from various inversion methods or seismic attribute analyses. Stratigraphers can help quality check the results and learn about relationships between depositional features and lithologic properties of interest. Stratigraphers also can contribute to a better seismic analysis by helping to define the effects of “stratigraphy” (e.g., laminations, porosity, bedding) on rock properties and seismic responses. These and other seismic-related pursuits would benefit from enhanced collaboration between sedimentary geologists and geophysicists.


2018 ◽  
Vol 6 (2) ◽  
pp. SD1-SD12 ◽  
Author(s):  
Hongliu Zeng

I have developed an alternative narrative of seismic sedimentology from a geologist’s perspective. Seismic sedimentology is a high-resolution supplement for traditional, low-resolution seismic stratigraphy, reflecting the fact that seismic responds to sedimentary bodies differently at low and high resolution. Seismic stratigraphy is a model-driven method that follows the principles of field geology and the well-based study of subsurface sedimentology, and it assumes that seismic reflections can duplicate geologic correlations. Seismic sedimentology is a more data-driven approach based on the understanding of how a seismic signal responds to thin-bedded depositional elements in the context of stratigraphy, which is a function of thickness, lithology-impedance model, wavelet phase, and frequency. Seismic sedimentology is focused on mapping seismic litho-geomorphologic facies, by joint investigation of seismic lithology and seismic geomorphology. In such an investigation, seismic lithology and seismic geomorphology are complementary, making more complete use of seismic information, and they can be more powerful in determining the sedimentary environment and reservoir quality. To reduce the knowledge gap between sedimentary geologists and seismic geophysicists, sedimentologists have to learn and master geophysical principles and techniques. To begin with, a simplified four-step workflow is recommended, which can be summarized as select-adjust-decompose-blend.


2015 ◽  
Vol 2015 (1) ◽  
pp. 1-1
Author(s):  
Henry W. Posamentier ◽  
Andrew S. Madof ◽  
Simon C. Lang ◽  
Kenneth D. Ehman

Sign in / Sign up

Export Citation Format

Share Document