seismic reflections
Recently Published Documents


TOTAL DOCUMENTS

251
(FIVE YEARS 28)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Vagif Suleymanov ◽  
Abdulhamid Almumtin ◽  
Guenther Glatz ◽  
Jack Dvorkin

Abstract Generated by the propagation of sound waves, seismic reflections are essentially the reflections at the interface between various subsurface formations. Traditionally, these reflections are interpreted in a qualitative way by mapping subsurface geology without quantifying the rock properties inside the strata, namely the porosity, mineralogy, and pore fluid. This study aims to conduct the needed quantitative interpretation by the means of rock physics to establish the relation between rock elastic and petrophysical properties for reservoir characterization. We conduct rock physics diagnostics to find a theoretical rock physics model relevant to the data by examining the wireline data from a clastic depositional environment associated with a tight gas sandstone in the Continental US. First, we conduct the rock physics diagnostics by using theoretical fluid substitution to establish the relevant rock physics models. Once these models are determined, we theoretically vary the thickness of the intervals, the pore fluid, as well as the porosity and mineralogy to generate geologically plausible pseudo-scenarios. Finally, Zoeppritz (1919) equations are exploited to obtain the expected amplitude versus offset (AVO) and the gradient versus intercept curves of these scenarios. The relationship between elastic and petrophysical properties was established using forward seismic modeling. Several theoretical rock physics models, namely Raymer-Dvorkin, soft-sand, stiff-sand, and constant-cement models were applied to the wireline data under examination. The modeling assumes that only two minerals are present: quartz and clay. The appropriate rock physics model appears to be constant-cement model with a high coordination number. The result is a seismic reflection catalogue that can serve as a field guide for interpreting real seismic reflections, as well as to determine the seismic visibility of the variations in the reservoir geometry, the pore fluid, and the porosity. The obtained reservoir properties may be extrapolated to prospects away from the well control to consider certain what-if scenarios like plausible lithology or fluid variations. This enables building of a catalogue of synthetic seismic reflections of rock properties to be used by the interpreter as a field guide relating seismic data to volumetric reservoir properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew J. Calvert ◽  
Michael P. Doublier ◽  
Samantha E. Sellars

AbstractSeismic reflectors in the uppermost mantle, which can indicate past plate tectonic subduction, are exceedingly rare below Archaean cratons, and restricted to the Neoarchaean. Here we present reprocessed seismic reflection profiles from the northwest Archaean Yilgarn Craton and the Palaeoproterozoic Capricorn Orogen of western Australia that reveal the existence of a ~4 km thick south-dipping band of seismic reflectors that extends from the base of the Archaean crust to at least 60 km depth. We interpret these reflectors, which lie south of a ~50 km deep crustal root, as a relict suture zone within the lithosphere. We suggest that the mantle reflectors were created either by subduction of an oceanic plate along the northern edge of the Yilgarn Craton, which started in the Mesoarchaean and produced the rocks in northern Yilgarn greenstone belts that formed in a supra-subduction zone setting, or, alternatively, by underthrusting of continental crust deep into the lithosphere during the Palaeoproterozoic.


2021 ◽  
Author(s):  
Valentyn Loktyev ◽  
Sanzhar Zharkeshov ◽  
Oleh Hotsynets ◽  
Oleksandr Davydenko ◽  
Mikhailo Machuzhak ◽  
...  

Abstract In the Dnipro-Donets depression, the Devonian salt during Carboniferous time became movable and created salt domes in the Permian, moving to the sea bottom and flowing therewith, forming bodies visible today as salt canopies and overhangs. These features are clear pieces of evidence of salt exposure on the surface, especially considering belts of reservoirs around salt domes. These reservoirs can be extremely prolific in some wells. Previous exploration targeting such deposits was driven mainly by drilling wells within the areas of known deep fields such as Medvedivske, Zakhidno-Khrestyschenske and others in the central part of the DDB. These reservoirs are composed of poorly sorted coarse material of wide variety of rocks including sandstones, carbonates, dolomites, igneous rocks of deep (granites), and shallow (diabases) formations. Currently, with the availability of 3D seismic surveys, these deposits become visible as bright spots and flat spots. Although it is not a 100% indicator due to fact that shallow salt canopies and lithology changes of rocks around salt domes may also interpret seismic reflections. It is good to mention that the Permian is an aridic environment with gradually losing water influx to the basin from base to top within the thickness of more than 1-2 kilometers. It could be utilized as boundary analogues to cover most of the possible intermediate scenarios in three areas. The first analogue is the outcropped salt dome in Solotvyno village in Carpathian mountains in western Ukraine close to the Romania border. This salt dome is an important example of showing the current deposition of transported coarse material from depth around salt domes. The second one is salt domes exposed as mountains of the Oman desert where it is possible to follow the material path approaching the salt uplift. And the third example is the Death Valley in Arizona, USA. The valley is an example of fans mostly deposited by gravity rather than permanent water flows. It good to mention that there are more examples that could be treated as direct analogues (the Zagros mountains in Iran) but they are not easily accessible for field trips if needed. For recognizing real targets vs artifacts, applying the knowledge of current deposition examples around the world would help dramatically (Western Ukraine, Oman, Death Valley in Arizona).


2021 ◽  
Vol 72 ◽  
pp. 1-13
Author(s):  
Chee Meng Choong ◽  
◽  
Manuel Pubellier ◽  
Benjamin Sautter ◽  
Mirza Arshad Beg ◽  
...  

Over two decades, analysis of seismic attributes had been an integral part of seismic reflection interpretation. Seismic attributes are an influential assistance to seismic interpretation, delivering geoscientists with alternative images of structural (faults) and stratigraphic features (channels), which can be utilised as mechanisms to identify prospects, ascertain depositional environment and structural deformation history more rapidly even provide direct hydrocarbon indicators. The additional steps are obligatory to compute and interpret the attributes of faults and channels from seismic images, which are often sensitive to noise due to the characteristically computed as discontinuities of seismic reflections. Furthermore, on a conventional seismic profile or poor quality data, faults and channels are hard to visible. The current research review these geological structures through a case study of 3D seismic data from N-field in the viewpoint of Malay Basin. This study aimed to characterise the structure and stratigraphic features by using seismic attributes on the N-field below seismic resolution. Also, two different methods are proposed to improve seismic reflections, i.e., faults and channels that are hard to see on the conventional 3D data set. The first method, to detect faults in seismic data, which this paper employs the ant tracking attribute as a unique algorithm to be an advanced forwarding that introduces a new tool in the interpretation of fault. The effective implementation of ant tracking can be achieved when the output of other faults sensitive attributes are used as input data. In this work, the seismic data used are carefully conditioned using a signal. Chaos and variance that are sensitive to faults are applied to the seismic data set, and the output from these processes are used as input data that run the ant tracking attribute, which the faults were seen difficult to display on the raw seismic data. Meanwhile, for the second method, spectral decomposition was adopted to deliberate the way its method could be utilised to augment stratigraphic features (channels) of the N-field, where the channel is ultimately considered being one of the largest formations of the petroleum entrapment. The spectral decomposition analysis method is an alternative practice concentrated on processing S-transform that can offer better results. Spectral decomposition has been completed over the Pleistocene channels, and results propose that application of its methods directs to dependable implications. Respective channel in this area stands out more obviously within the specific frequency range. The thinner layer demonstrates higher amplitude reading at a higher frequency, and the thicker channel displays higher amplitude reading at a lower frequency. Implementation of spectral decomposition assists in deciding the channels that were placed within incised valleys and helps in recognising the orientation and the relative thickness of each channel. By doing this, the ant tracking attribute and spectral decomposition approach have generated the details of subsurface geologic features through attributes by obtaining enhanced reflections and channels and sharpened faults, respectively.


2021 ◽  
Vol 72 ◽  
pp. 101-111
Author(s):  
Nur Shafiqah Shahman ◽  
◽  
Norazif Anuar ◽  
Mohamed Elsaadany Mohamed Elsaadany ◽  
Deva Prasad Ghosh ◽  
...  

Over two decades, analysis of seismic attributes had been an integral part of seismic reflection interpretation. Seismic attributes are an influential assistance to seismic interpretation, delivering geoscientists with alternative images of structural (faults) and stratigraphic features (channels), which can be utilised as mechanisms to identify prospects, ascertain depositional environment and structural deformation history more rapidly even provide direct hydrocarbon indicators. The additional steps are obligatory to compute and interpret the attributes of faults and channels from seismic images, which are often sensitive to noise due to the characteristically computed as discontinuities of seismic reflections. Furthermore, on a conventional seismic profile or poor quality data, faults and channels are hard to visible. The current research review these geological structures through a case study of 3D seismic data from N-field in the viewpoint of Malay Basin. This study aimed to characterise the structure and stratigraphic features by using seismic attributes on the N-field below seismic resolution. Also, two different methods are proposed to improve seismic reflections, i.e., faults and channels that are hard to see on the conventional 3D data set. The first method, to detect faults in seismic data, which this paper employs the ant tracking attribute as a unique algorithm to be an advanced forwarding that introduces a new tool in the interpretation of fault. The effective implementation of ant tracking can be achieved when the output of other faults sensitive attributes are used as input data. In this work, the seismic data used are carefully conditioned using a signal. Chaos and variance that are sensitive to faults are applied to the seismic data set, and the output from these processes are used as input data that run the ant tracking attribute, which the faults were seen difficult to display on the raw seismic data. Meanwhile, for the second method, spectral decomposition was adopted to deliberate the way its method could be utilised to augment stratigraphic features (channels) of the N-field, where the channel is ultimately considered being one of the largest formations of the petroleum entrapment. The spectral decomposition analysis method is an alternative practice concentrated on processing S-transform that can offer better results. Spectral decomposition has been completed over the Pleistocene channels, and results propose that application of its methods directs to dependable implications. Respective channel in this area stands out more obviously within the specific frequency range. The thinner layer demonstrates higher amplitude reading at a higher frequency, and the thicker channel displays higher amplitude reading at a lower frequency. Implementation of spectral decomposition assists in deciding the channels that were placed within incised valleys and helps in recognising the orientation and the relative thickness of each channel. By doing this, the ant tracking attribute and spectral decomposition approach have generated the details of subsurface geologic features through attributes by obtaining enhanced reflections and channels and sharpened faults, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyadarshi Chinmoy Kumar ◽  
Tiago M. Alves ◽  
Kalachand Sain

AbstractThis work uses a high-quality 3D seismic volume from offshore Canterbury Basin, New Zealand, to investigate how submarine canyon systems can focus sub-surface fluid. The seismic volume was structurally conditioned to improve the contrast in seismic reflections, preserving their lateral continuity. It reveals multiple pockmarks, eroded gullies and intra-slope lobe complexes occurring in association with the Waitaki Submarine Canyon. Pockmarks are densely clustered on the northern bank of the canyon and occur at a water depth of 500–900 m. In parallel, near-seafloor strata contain channel-fill deposits, channel lobes, meandering channel belts and overbank sediments deposited downslope of the submarine canyon. We propose that subsurface fluid migrates from relatively deep Cretaceous strata through shallow channel-fill deposits and lobes to latter seep out through the canyon and associated gullies. The new, reprocessed Fluid Cube meta-attribute confirms that fluids have seeped out through the eroded walls of the Waitaki Canyon, with such a seepage generating seafloor depressions in its northern bank. Our findings stress the importance of shallow reservoirs (channel-fill deposits and lobes) as potential repositories for fluid, hydrocarbons, or geothermal energy on continental margins across the world.


2021 ◽  
Vol 62 (3) ◽  
pp. 37-45
Author(s):  

This study uses 2D seismic lines located in the central Song Hong Basin, covering an area of c. 3900 m2, in the water depth of c. 100 m. Focused fluid flows are developed intensively and can be classified into two types: blow - out pipe and seepage pipe. They have similar seismic characteristics as a vertical zone of disturbed seismic reflections. The significant difference between them is the blow - out pipes associated with seafloor pockmarks and paleo - pockmarks which are absent in the seepage pipe. Besides, the scale of the blow - out pipe is larger, compared with the seepage pipe. The blow - out pipe is c. 500 m wide and 450÷3500 ms TWT; the seepage pipe is smaller scale, c. 200 m wide and 500 ms TWT. Blow - out pipe is rooting from the sequence just above the diapir or deformation unit or deep lacustrine mudstones from the Late Eocene to Oligocene, and marine mudstones from the Early to Middle Miocene. The seepage pipe is rooting from the sequence above the diapir. The focused fluid flow is supposed to be controlled by the overpressured deep source layers and passive diapirism. The occurrence of focused fluid flow is an indicator for the active petroleum system in the study area. Intensive development of focused fluid flow proves a great hydrocarbon potential in the Song Hong basin.


2021 ◽  
Author(s):  
Anna-Catharina Brandt ◽  
David C. Tanner ◽  
Hermann Buness ◽  
Thomas Burschil ◽  
Gerald Gabriel

<p><span>Overdeepened valleys in the Alps allow to probe the glacial sedimentation record, which in turn can illuminate the climatic history. In particular, seismic reflections can be used to extend punctual borehole data (for instance a number of boreholes are to be drilled into Alpine glacial overdeepened valleys as part of the DOVE ICDP project) in the second dimension or even survey a region before drilling begins. Thus, we use detailed, 2-D seismic P-wave profiles to reveal the shape and infill of an overdeepened Rhine glacier valley in the area of Basadingen, near to the German/Swiss border. We acquired two profiles nearly perpendicular to the valley strike, approximately 500 m apart. The first profile was 1246 m long, and consisted of a single spread of 624 geophones. The second profile was 1120 m long and was acquired using 200 3-component geophones using a roll-along method. For both profiles we used a vibro-source with a 12 s linear sweep of 20-240 Hz at every second geophone (two metre spacing), which produced a high fold.</span></p><p><span>Both seismic images reveal that the overdeepened basin at this location is asymmetrical and circa 260 m deep, although the deepest part (220</span><span> </span><span>m wide) covers only a small portion of the broader main valley. The infill is characterised by at least three unconformities and distinct onlap and erosive boundaries between the sedimentary units. We interpret the infill to represent a highly dynamic sedimentary system. The lower part, within the deepest part of the basin is filled with chaotic sediments and slumping. Above a major unconformity, the upper part contains strongly-dipping reflectors that probably represent a prograding point-bar in a glacio-fluviatile environment that migrated toward the north-east. Beneath the deepest part of the basin we see evidence for faults in the Tertiary Molasse basement, which correlate with known faults at the surface. The faults most likely caused the valley to be sited at this location and they were probably also the cause of the ‘valley in valley’ shape.</span></p><p><span>A new DOVE research borehole will be drilled in the centre of the valley in 2021. This will bring more light on the sedimentary history and OSL-dating of the material will bracket the timing of the infill. </span></p>


Sign in / Sign up

Export Citation Format

Share Document