scholarly journals Estimation of Transient Response in a Pneumatic Pipeline with Turbulent Transition using a One-dimensional Model

2021 ◽  
Vol 14 (2) ◽  
pp. 43-48
Author(s):  
Mitsuhiro NAKAO ◽  
Kotaro KISHI ◽  
Ryo KAWADA ◽  
Kyotaro TANAKA
1996 ◽  
Vol 63 (3) ◽  
pp. 575-581 ◽  
Author(s):  
Z. S. Olesiak ◽  
Yu. A. Pyryev

We consider two layers of different materials with the initial gap between them in the field of temperature with imperfect boundary conditions in Barber’s sense. The model we discuss is that of two contacting rods (Barber and Zhang, 1988) which in the case of a single rod was devised and discussed by Dundurs and Comninou (1976, 1979). In this paper we try to make a step further in the investigation of the essentially nonlinear problem. Though we consider a system of the linear equations of thermoelasticity the nonlinearity is induced by the boundary conditions dependent on the solution. We present an algorithm for solving the system of equations based on Laplace’s transform technique. The method of solution can be used also in the dynamical problems with inertial terms taken into account. The numerical results have been obtained by a kind of computational simulation.


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


1992 ◽  
Vol 25 (10) ◽  
pp. 2889-2896 ◽  
Author(s):  
R D Gianotti ◽  
M J Grimson ◽  
M Silbert

1993 ◽  
Vol 50 (1) ◽  
pp. 51-70 ◽  
Author(s):  
D. Zoler ◽  
S. Cuperman ◽  
J. Ashkenazy ◽  
M. Caner ◽  
Z. Kaplan

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.


2009 ◽  
Vol 25 (6) ◽  
pp. 1220-1225 ◽  
Author(s):  
Cristian H. Birzer ◽  
Con J. Doolan

Sign in / Sign up

Export Citation Format

Share Document