scholarly journals A modified damage law with the fuzzy neural network method for crack initiation life prediction of notched specimen

Mechanika ◽  
2018 ◽  
Vol 23 (6) ◽  
Author(s):  
Jiaying Gao ◽  
Peng Li ◽  
Qiuyang He
2008 ◽  
Vol 33-37 ◽  
pp. 1283-1288 ◽  
Author(s):  
Chao Hua Fan ◽  
Yu Ting He ◽  
Hong Peng Li ◽  
Feng Li

Genetic algorithm is introduced in the study of network authority values of BP neural network, and a GA-NN algorithm is established. Based on this genetic algorithm-neural network method, a predictive model for fatigue performances of the pre-corroded aluminum alloys under a varied corrosion environmental spectrum was developed by means of training from the testing dada. At the same time, a fuzzy-neural network method is established for the same purpose. The results indicate that genetic algorithm-neural network and fuzzy-neural network can both be employed to predict the underlying fatigue performances of the pre-corroded aluminum alloy precisely.


Author(s):  
Lu-Kai Song ◽  
Guang-Chen Bai ◽  
Cheng-Wei Fei ◽  
Rhea P Liem

To improve the efficiency and accuracy of transient probabilistic analysis of flexible multibody systems, a dynamic fuzzy neural network method-based distributed collaborative strategy is proposed by integrating extremum response surface method and fuzzy neural network. Distributed collaborative dynamic fuzzy neural network method is mathematically modeled and derived by considering the high nonlinearity, strong coupling, and multicomponent characteristics of a flexible multibody system. The proposed method is demonstrated to perform the transient probabilistic analysis of a two-link flexible robot manipulator. We obtain the distributional characteristics, reliability degree, and sensitivity degree of robot manipulator, which are useful for the effective design of robot manipulator. By comparing the full-scale method, extremum response surface method, dynamic fuzzy neural network method, and distributed collaborative dynamic fuzzy neural network method, we find that the distributed collaborative dynamic fuzzy neural network method can be used to perform the transient probabilistic analysis of the robot manipulator and improve the computational efficiency while maintaining a good accuracy. Moreover, this study offers a useful insight for the reliability-based design optimization of flexible multibody systems, and enriches the field of mechanical reliability theory as well.


Sign in / Sign up

Export Citation Format

Share Document