scholarly journals Evaluation of Heat Evolution of Pastes Containing High Volume of Ground River Sand and Ground Granulated Blast Furnace Slag

2017 ◽  
Vol 23 (1) ◽  
Author(s):  
Punnaman NORRARAT ◽  
Weerachart TANGCHIRAPAT ◽  
Chai JATURAPITAKKUL
2012 ◽  
Vol 575 ◽  
pp. 100-103 ◽  
Author(s):  
Dong Sheng Shi ◽  
Ping Han ◽  
Zheng Ma ◽  
Jing Bo Wang

In this paper, the experiment about compressive strength of concrete using granulated blast furnace slag as fine aggregate was introduced. In this experiment, granulated blast furnace slag fine aggregates that were produced by two different steel factory and natural river sands that came from two different producing area were been used, and compressive strength of concrete for testing were four levels from ordinary strength level to high strength level. As results, the compressive strength of concrete that used granulated blast furnace slag as fine aggregate increase with increasing of concrete age as good as the concrete used nature river sand. At the early age of 3 days and 7days, whether water-cement ratio, the compressive strength of concrete using slag fine aggregate is always lower than concrete using river sand. At the long age of 91 days, the compressive strength of concrete using slag fine aggregate exceed the concrete using river sand when water-cement ratio was greater than 30%. The compressive strength of concrete using granulated blast furnace slag as fine aggregate can exceed 80N/mm2, the granulated blast furnace slag can be used in high-strength concrete.


2015 ◽  
Vol 754-755 ◽  
pp. 395-399 ◽  
Author(s):  
Omer Abdalla Alawad ◽  
Abdulrahman Alhoziamy ◽  
Mohd Saleh Jaafar ◽  
Farah Noor Abdul Aziz ◽  
Abdulaziz Al-Negheimish

This paper presents the results of using ground dune sand (GDS) and ground granulated blast furnace slag (slag) as high volume cement replacement materials. In this study, plain and four blended mixtures were fabricated and cured under normal and autoclave conditions. For the blended mixtures, 40% GDS by weight of the total binder materials and different percentages of slag (15%, 30% and 45%) were incorporated as partial cement replacement materials. The effect of curing conditions (normal and autoclave) on the compressive strength of prepared mixtures was studied. The results showed that, for the autoclave cured mixture, up to 85% of cement can be replaced by GDS and slag without significant drop in the compressive strength. Microstructure analyses using scanning electron microscope (SEM) and X-ray diffraction analysis (XRD) were carried out to examine the microscale changes of the hydrated mixtures. The SEM revealed the formation of thin plate-like calcium silicate hydrate and compacted microstructure of autoclave cured mixture. XRD showed the elimination of calcium hydroxide and existence of residual crystalline silica of all blended mixtures.


2021 ◽  
Vol 279 ◽  
pp. 122427
Author(s):  
Akli Younsi ◽  
Rachid Cherif ◽  
Abdelkrim Trabelsi ◽  
Ameur El Amine Hamami ◽  
Rafik Belarbi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document