scholarly journals Wet Surface Air-Side Performance of Fin-and-Tube Heat Exchangers Having Sine Wave Fins and Oval Tubes

2015 ◽  
Vol 16 (4) ◽  
pp. 2415-2423
Author(s):  
Nae-Hyun Kim
2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Young-Gil Park ◽  
Anthony M. Jacobi

The air-side thermal-hydraulic performance of flat-tube aluminum heat exchangers is studied experimentally for conditions typical to air-conditioning applications, for heat exchangers constructed with serpentine louvered, wavy, and plain fins. Using a closed-loop calorimetric wind tunnel, heat transfer and pressure drop are measured at air face velocities from 0.5 m/s to 2.8 m/s for dry- and wet-surface conditions. Parametric effects related to geometry and operating conditions on heat transfer and friction performance of the heat exchangers are explored. Significant differences in the effect of geometrical parameters are found for dry and wet conditions. For the louver-fin geometry, using a combined database from the present and the previous studies, empirical curve-fits for the Colburn j- and f-factors are developed in terms of a wet-surface multiplier. The wet-surface multiplier correlations fit the present database with rms relative residuals of 21.1% and 24.4% for j and f multipliers, respectively. Alternatively, stand-alone Colburn j and f correlations give rms relative residuals of 22.7% and 29.1%, respectively.


2014 ◽  
Vol 66 (1-2) ◽  
pp. 580-589 ◽  
Author(s):  
Nae-Hyun Kim ◽  
Kang-Jong Lee ◽  
Yeong-Bin Jeong

Author(s):  
Byung-Nam Choi ◽  
Fung Yi ◽  
Hyun-Min Sim ◽  
Nae-Hyun Kim
Keyword(s):  

2013 ◽  
Vol 21 (01) ◽  
pp. 1350008 ◽  
Author(s):  
NAE-HYUN KIM ◽  
KANG-JONG LEE ◽  
JI-CHAO HAN ◽  
BYUNG-NAM CHOI

Experiments were conducted on sine wave fin-and-tube heat exchangers having oval tubes of 0.6 aspect ratio. Twelve samples having different fin pitches and tube rows were tested. Eight herringbone wave fin-and-tube heat exchangers having round tubes were also tested. For round tube samples, the effect of tube row on j factor is not prominent. For oval tube samples, however, the highest j factor is observed for two row configuration, whereas the lowest one is observed for one row configuration. Possible reasoning is provided considering the flow and heat transfer characteristics of sine wave channel combined with connecting oval tubes. The friction factor decreases as number of tube row increases. Comparison with round tube samples reveals that airside performance of oval fin-and-tube heat exchangers is generally superior except for one-row configuration.


2010 ◽  
Vol 53 (1-3) ◽  
pp. 568-573 ◽  
Author(s):  
Worachest Pirompugd ◽  
Chi-Chuan Wang ◽  
Somchai Wongwises
Keyword(s):  

2011 ◽  
Vol 19 (03) ◽  
pp. 185-193 ◽  
Author(s):  
JIN-WOOK LEE ◽  
NAE-HYUN KIM ◽  
HYUN-MIN SIM

In this study, wet surface j and f factors were obtained for spiral fin-and-tube heat exchangers. Nine samples having different fin pitches (2.12, 2.54 and 3.18 mm) and different tube rows (1, 2 and 3 row) were tested. Data are compared with those of the dry surface. For the wet surface, the effect of fin pitch on j factor is not significant. However, f factor decreases as the number of tube row increases. The j factor increases as the number of tube row increases. Different from the j factor, f factor decreases as the number of tube row increases. At one row configuration, the dry surface j factor is larger than that of the wet surface one. As the number of tube row increases, the trend is gradually reversed. Possible reasoning is provided considering the condensate behavior under wet condition. A new j and f factor correlation is developed, which predicts j and f factors within ± 20% and ± 30%, respectively.


1999 ◽  
Vol 121 (4) ◽  
pp. 1018-1026 ◽  
Author(s):  
K. Hong ◽  
R. L. Webb

Limited previous work has shown that use of special hydrophilic coatings will provide lower air pressure drop in finned tube heat exchangers operated under dehumidifying conditions. However, no detailed work has been reported on the effect of different coating types, or different fin surface geometries on the wet pressure drop. In this study, wind tunnel tests were performed on three different fin geometries (wavy, lanced, and louver) under wet and dry conditions. All dehumidification tests were done for fully wet surface conditions. For each geometry, the tests were performed on uncoated and coated heat exchangers. For all three fin geometries, the wet-to-dry pressure drop ratio was 1.2 at 2.5 m/s frontal air velocity. The coatings have no influence on the wet or dry heat transfer coefficient. However, the wet surface heat transfer coefficient was 10 to 30 percent less than the dry heat transfer coefficient, depending on the particular fin geometry. The effect of the fin press oil on wet pressure drop was also studied. If the oil contains a surfactant, good temporary wetting can be obtained on an uncoated surface; however, this effect is quickly degraded as the oil is washed from the surface during wet operation. This work also provides a critical assessment of data reduction methods for wet surface operation, including calculation of the fin efficiency.


Sign in / Sign up

Export Citation Format

Share Document