scholarly journals Analysis of Thermistor Fixture Design Parameter for ICCB Power Plug to Improve the Temperature Accuracy

2021 ◽  
Vol 22 (11) ◽  
pp. 73-81
Author(s):  
Hyun-Seung Lee ◽  
Euy-Sik Jeon ◽  
Young-Shin Kim
Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari

The assessment of robust CFD techniques is casting new light on the aerodynamics of airfoils rotating around an axis orthogonal to flow direction, with particular reference to flow curvature effects and stall mechanisms. In particular, Darrieus wind turbines’ designers are taking profit from these new discovers to improve the aerodynamic design of the rotors, in view of an increase of the overall efficiency and a reduction of the structural stresses on the blades. A controversial design parameter for Darrieus turbines, especially in case of small-size rotors, is represented by the location of the blade-spoke connection along the chord. The most common solution is indeed to place the connection at approximately airfoil’s quarter chord, i.e. where the pressure center is commonly located for low incidence angles. In some cases, however, the blade is connected at middle chord due to symmetry or aesthetic reasons. In some small turbines, innovative designs have even disregarded this parameter. Even if one can argue that the blade connection point is about to have some aerodynamic effects on the turbine’s performance, the real impact of this important design parameter is often not fully understood. The present study makes use of extensive CFD simulations on a literature case study, using a NACA 0021 airfoil, to assess the influence of the blade-spoke connection point. In particular, the differences in terms of power coefficient curve of the turbine, optimal tip-speed ratio, torque profiles and stresses on the connection are analyzed and discussed. Detailed flow analyses are also shown for azimuthal positions of particular interest. Results on the selected case study showed that the middle-chord blade-spoke connection point seems to guarantee a higher performance of the rotor, even if additional solicitation is applied to the connection itself. It is further shown that the same performance can indeed be obtained with the airfoil attached at quarter chord and properly pitched. By doing so, the stresses are contained and the performance is maximized.


2014 ◽  
Vol 216 ◽  
pp. 310-315
Author(s):  
Felicia Veronica Banciu ◽  
George Drăghici ◽  
Eugen Pămîntaş

the paper proposes an axiomatic design view of orientation schemes used in fixture design, in context of using the axiomatic design rules and guidance to fixture design. In this paper the axiomatic design, matrix and rules are applied to orientation schemes in order to see what kind of designs result (uncoupled, decoupled) and how can be applied the information axiom to choose among the orientation schemes that one (s) that are best suited for the declared purposes-minimum orientation errors.


2000 ◽  
Vol 123 (3) ◽  
pp. 462-472 ◽  
Author(s):  
Johan S. Carlson

The main purpose of locating schemes are to position parts. The locating scheme utilizes tooling elements, referred to as locators, to introduce geometric constraints. A rigid part is uniquely positioned when it is brought into contact with the locators. By using kinematic analysis we derive a quadratic sensitivity equation that relates position error in locators with the resulting displacement of the part held by the locating scheme. The sensitivity equation which depends on the locator positions and the workpiece geometry around the contact points can be used for locating scheme evaluation, robust fixture design, tolerancing and diagnosis. The quadratic sensitivity equation derived in this paper is novel by adequate dealing with locator contact at nonprismatic surfaces, nonsmall errors, locator error interaction effects and locator errors in arbitrary directions. Theory for comparing the relative gain in precision by using the quadratic sensitivity equation instead of the linear is developed. The practical relevance of the quadratic sensitivity equation is tested through numerical experiments.


1971 ◽  
Vol 93 (4) ◽  
pp. 1225-1228 ◽  
Author(s):  
W. L. Starkey ◽  
T. G. Foster ◽  
S. M. Marco

A new design parameter, friction-instability, is defined in this paper. Friction-instability is a variation in the coefficient of friction which may occur at any time during the life of a brake lining. A friction-index is defined which measures this variation. A lining which has a high friction index may tend to cause an automobile to swerve either to the right or to the left. A unique experimental facility is described by means of which the friction-instability characteristics of brake linings can be measured. Test results using this facility are presented and interpreted. The friction-index is proposed as a new parameter which should be taken into consideration when brakes are designed and, developed. This index should be particularly useful as a quality control device to insure that machines which use mass-produced braking systems will perform in a safe and effective manner.


Sign in / Sign up

Export Citation Format

Share Document