scholarly journals Adaptive Backstepping Flight Control for Modern Fighter Aircraft

Author(s):  
L. Sonneveldt ◽  
Q.P. Chu ◽  
J.A. Mulder
2021 ◽  
Author(s):  
R. S. Lopes ◽  
M. P. Nostrani ◽  
L. A. Carvalho ◽  
A. Dell’Amico ◽  
P. Krus ◽  
...  

Abstract This paper presents the design and modeling process of a flight control actuator using digital hydraulics and a performance analysis that compares the proposed solution and the Servo Hydraulic Actuator (SHA) on a fighter aircraft model. The proposed solution is named Digital Hydraulic Actuator (DHA) and comprises the use of a multi-chamber cylinder controlled by on/off valves and different pressures sources provided by a centralized hydraulic power unit, as proposed in the Fly-by-Wire (FbW) concept. The analyses were carried out using the Aero-Data Model in a Research Environment (ADMIRE), which was developed for flight performance analysis. The actuators were modeled using the software Matlab/Simulink® and Hopsan. They were applied to control the aircraft elevons in a flight mission close to the aircraft limits, to evaluate the actuator’s behavior and energy efficiency. The results show a reduction in energy dissipation up to 22.3 times when comparing the DHA with the SHA, and despite the overshooting and oscillations presented, the aircraft flight stability was not affected.


2007 ◽  
Vol 30 (2) ◽  
pp. 322-336 ◽  
Author(s):  
L. Sonneveldt ◽  
Q. P. Chu ◽  
J. A. Mulder

2014 ◽  
Vol 31 (4) ◽  
Author(s):  
Benjamin Gal-Or

AbstractThe jet engine is the prime flight controller in post-stall flight domains where conventional flight control fails, or when the engine prevents catastrophes in training, combat, loss of all airframe hydraulics (the engine retains its own hydraulics), loss of one engine, pilot errors, icing on the wings, landing gear and runway issues in takeoff and landing and in bad-whether recoveries. The scientific term for this revolutionary technology is “jet-steering”, and in engineering practice – “thrust vectoring”, or “TV”.Jet-Steering in advanced fighter aircraft designs is integrated with stealth technology. The resulting classified Thrust-Vectoring-Stealth (“TVS”) technology has generated a second jet-revolution by which all Air-&-Sea-Propulsion Science and R&D are now being reassessed.ClassifiedOne, and perhaps a key conclusion presented here, means that bothMobile telecommunication of safe links between flyers and combat drones (“UCAVs”) at increasingly deep penetrations into remote, congested areas, can gradually be purchased-developed-deployed and then operated by extant cader of tens of thousandsWe also provide 26 references [17–43] to a different, unclassified technology that enhances TV-inducedExpected benefits include anti-terror recoveries from emergencies, like forced landing on unprepared runways or highways, or recoveries from all airframe-hydraulics-outs, asymmetric ice on wings, landing gear catastrophes, and recoveries from pilot errors and bad-whether incidents [Rule 9(7)].


2020 ◽  
Author(s):  
Asha Garg ◽  
Uma H. R. ◽  
Usha G. ◽  
Amitabh Saraf

Most modern fighter aircraft are multi-role by design and rely heavily on a number of systems that are computer controlled in real time for achieving the most optimal performance. This paper presents three important real time control systems designed for the Indian Light Combat Aircraft. These are the flight control system, the anti-skid brake control system and the environment control system. Design objectives for these systems along with a description of their various hardware elements, software architecture and design concepts have been presented here. All the systems house extremely critical functions during different phases of flight, and so are designed for high degrees of reliability and extremely low failure probabilities. The concepts adopted for redundancy management, failure identification and failure handling are also presented.


Sign in / Sign up

Export Citation Format

Share Document