Modeling and Analysis of a Digital Hydraulic Actuator for Flight Control Surfaces

2021 ◽  
Author(s):  
R. S. Lopes ◽  
M. P. Nostrani ◽  
L. A. Carvalho ◽  
A. Dell’Amico ◽  
P. Krus ◽  
...  

Abstract This paper presents the design and modeling process of a flight control actuator using digital hydraulics and a performance analysis that compares the proposed solution and the Servo Hydraulic Actuator (SHA) on a fighter aircraft model. The proposed solution is named Digital Hydraulic Actuator (DHA) and comprises the use of a multi-chamber cylinder controlled by on/off valves and different pressures sources provided by a centralized hydraulic power unit, as proposed in the Fly-by-Wire (FbW) concept. The analyses were carried out using the Aero-Data Model in a Research Environment (ADMIRE), which was developed for flight performance analysis. The actuators were modeled using the software Matlab/Simulink® and Hopsan. They were applied to control the aircraft elevons in a flight mission close to the aircraft limits, to evaluate the actuator’s behavior and energy efficiency. The results show a reduction in energy dissipation up to 22.3 times when comparing the DHA with the SHA, and despite the overshooting and oscillations presented, the aircraft flight stability was not affected.

Author(s):  
Ivan J. Mantovani ◽  
Heitor A. Kagueiama ◽  
Artur T. de C. Gama ◽  
Alessandro Dell' Amico ◽  
Petter Krus ◽  
...  

Abstract The development of actuators for flight control surfaces based on electrical technologies had a breakthrough in the last decade. Nevertheless, servo-hydraulic systems are still widely used. Servo Hydraulic Actuators (SHA) have the advantages of precise positioning, high dynamic response and being a jam-free solution in case of failures, but they present low energy efficiency. Digital hydraulics has become a topic of interest in improving energy efficiency in the fluid power community. A Digital Hydraulic Actuator (DHA) for aircraft is being developed to be used in primary flight control surfaces. The DHA concept is based on secondary control with multi-chamber cylinders and shows an energy efficiency gain with a similar response when compared to SHA. However, the opening and closing times of on/off valves are different and uncertain. These aspects may result in short circuits, bringing energy losses, or in blocked chambers, which may cause pressure peaks or cavitation. Consequently, the DHA system may have a lower energy efficiency or presents vibration due to fluid blocking. The present paper presents a solution for these issues and the reliability evaluation of the DHA. The opening and closing times issues are addressed using the synchronization between on/off valves through a method to find the correct time for valve opening control. As a result, the synchronization of pressure shifting without knowledge of the response times of on/off valves was accomplished. Moreover, when used periodically, this method can estimate future failures in valves due to a change of the required time delay. In order to evaluate the system reliability, FTA models were developed considering valve and pressure line failures, modelling how the failures affect force availability to move the control surfaces. The resulting FTAs were reduced to the minimum cut-sets that lead to force profiles that are insufficient for a safe flight and also may lead to an aircraft crash. Considering that the on/off valves have similar failure rates to those of servo valves, the results show that DHA and SHA have comparable reliability levels.


2014 ◽  
Vol 496-500 ◽  
pp. 1068-1072
Author(s):  
Xiao Jie Zang ◽  
Zhi Dong Zhang ◽  
Chang Liu

For a certain type of small unmanned aerial vehicles (SUAV), using the vortex lattice method (VLM) estimated the aerodynamic derivatives, establishing linear small-perturbation equations based on level and non-sideslipping flight. Analyzed the static stability and mode characteristics based on the dimensionless derivative and matlab simulation. Early in the design, by mechanism modeling and performance analysis for the UAV through pneumatic calculations could get a lot of valuable reference data of the UAV. This has some practical significance for system performance analysis and flight control system design.


2021 ◽  
Vol 244 ◽  
pp. 114534
Author(s):  
Nicolas Vela-García ◽  
David Bolonio ◽  
María-Jesús García-Martínez ◽  
Marcelo F. Ortega ◽  
Daniela Almeida Streitwieser ◽  
...  

2012 ◽  
Vol 546-547 ◽  
pp. 1562-1567
Author(s):  
Kai Yin ◽  
Gang Yin ◽  
Qin Zhen Li

This document introduces the basic principle of the ELAC System (Elevator Aileron Computer System) working of A320 aircrafts, and mainly, analyzes the driving circuit of the ELAC computer for the flight control surfaces. Furthermore, introduces a real fault on line maintenance, analyze it and find out the reason, give some useful advice on A320 aircraft line maintenance.


2020 ◽  
Vol 8 (6) ◽  
pp. 5402-5411

The idea of DC-DC converter with multi-input is yet to attain a vital role in the field of 'hybrid energy system (HES)' integration and electric vehicle applications. So, the analysis of the dynamic behavior of the multi input converters is crucial in designing a proper controller to achieve a stable performance. This paper reports a 'small signal model (SSM)' and the performance analysis of a 'dual-input DC-DC converter (DIC)'. The parasitic resistances of capacitor and inductor are considered in the modelling. The significant transfer function (TF)s are derived with the help of the SSM, and the Bode plots for the TFs have been obtained. The performance analysis shows that the derived TFs allow better closed loop performance of the system. The simulation of the DIC converter in MATLAB/ Simulink® has been carried out and the simulation waveforms are presented. A hardware setup of the DIC converter is fabricated and experimented in the laboratory. The dynamic performance of the DIC is analyzed under the variations in the source and load conditions. The presented converter with a closed loop controller can be used in the applications to formulate a HES with solar-PV, battery, fuel cell, etc. Also the performance comparison of the DIC converter has been performed with other reported converters which shows that the DIC converter has higher efficiency and several other potential merits.


Sign in / Sign up

Export Citation Format

Share Document