scholarly journals The Evolutionary History of CBF Transcription Factors: Gene Duplication of CCAAT – Binding Factors NF-Y in Plants

10.5772/23719 ◽  
2011 ◽  
Author(s):  
Alexandro Cagliari ◽  
Andreia Carina ◽  
Felipe dos Santos Maraschin ◽  
Guilherme Loss ◽  
Rogerio Margis ◽  
...  
Science ◽  
2015 ◽  
Vol 347 (6222) ◽  
pp. 621.2-621 ◽  
Author(s):  
Jacob O. Brunkard ◽  
Anne M. Runkel ◽  
Patricia C. Zambryski

Sayou et al. (Reports, 7 February 2014, p. 645) proposed a new model for evolution of transcription factors without gene duplication, using LEAFY as an archetype. Their proposal contradicts the evolutionary history of plants and ignores evidence that LEAFY evolves through gene duplications. Within their data set, we identified a moss with multiple LEAFY orthologs, which contests their model and supports that LEAFY evolves through duplications.


1990 ◽  
Vol 3 (1) ◽  
pp. 145
Author(s):  
DJ Colgan

This paper is a review of the use of information regarding the presence of duplicate genes and their regulation in systematics. The review concentrates on data derived from protein electrophoresis and restriction fragment length polymorphism analysis. The appearance of a duplication in a subset of a group of species implies that the members of the subset belong to the same clade. Suppression of the duplication may render this clade apparently paraphyletic, but may itself be informative of relations within the lineage through patterns of loss of expression in all, or some tissues, or through restrictions of the formation of functional heteropolymers in polymeric enzymes. Examples are given of studies which have used such information to establish phylogenetic hypotheses at the family level, to identify an auto- or allo-polyploid origin of polyploid species and to determine whether there have been single or multiple origins of such species. The likelihood of homoplasy in the patterns of appearance and regulation of duplicates depends on the molecular basis of the duplication. In particular, the contrast between the expected consequences of tandem duplication and the expression of pseudogenes emphasises the value of determining the mechanism of the original duplication. Many instances of sporadic gene duplication are now known, and polyploidisation is a common event in the evolutionary history of both plants and animals. So the opportunities to discover duplicationrelated characters will arise in many systematic studies. A program is presented to increase the chances that such useful information will be recognisable during the studies.


2018 ◽  
Vol 219 (1) ◽  
pp. 408-421 ◽  
Author(s):  
Facundo Romani ◽  
Renata Reinheimer ◽  
Stevie N. Florent ◽  
John L. Bowman ◽  
Javier E. Moreno

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Bei Gao ◽  
Moxian Chen ◽  
Xiaoshuang Li ◽  
Yuqing Liang ◽  
Fuyuan Zhu ◽  
...  

2013 ◽  
Vol 30 (6) ◽  
pp. 1263-1269 ◽  
Author(s):  
Etienne Simon-Loriere ◽  
Edward C. Holmes

2018 ◽  
Vol 85 (2) ◽  
Author(s):  
Liangzhi Li ◽  
Zhenghua Liu ◽  
Delong Meng ◽  
Xueduan Liu ◽  
Xing Li ◽  
...  

ABSTRACTMembers of the genusAcidithiobacillus, which can adapt to extremely high concentrations of heavy metals, are universally found at acid mine drainage (AMD) sites. Here, we performed a comparative genomic analysis of 37 strains within the genusAcidithiobacillusto answer the untouched questions as to the mechanisms and the evolutionary history of metal resistance genes inAcidithiobacillusspp. The results showed that the evolutionary history of metal resistance genes inAcidithiobacillusspp. involved a combination of gene gains and losses, horizontal gene transfer (HGT), and gene duplication. Phylogenetic analyses revealed that metal resistance genes inAcidithiobacillusspp. were acquired by early HGT events from species that shared habitats withAcidithiobacillusspp., such asAcidihalobacter,Thiobacillus,Acidiferrobacter, andThiomonasspecies. Multicopper oxidase genes involved in copper detoxification were lost in iron-oxidizingAcidithiobacillus ferridurans,Acidithiobacillus ferrivorans, andAcidithiobacillus ferrooxidansand were replaced by rusticyanin genes during evolution. In addition, widespread purifying selection and the predicted high expression levels emphasized the indispensable roles of metal resistance genes in the ability ofAcidithiobacillusspp. to adapt to harsh environments. Altogether, the results suggested thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. This study sheds light on the distribution, organization, functionality, and complex evolutionary history of metal resistance genes inAcidithiobacillusspp.IMPORTANCEHorizontal gene transfer (HGT), natural selection, and gene duplication are three main engines that drive the adaptive evolution of microbial genomes. Previous studies indicated that HGT was a main adaptive mechanism in acidophiles to cope with heavy-metal-rich environments. However, evidences of HGT inAcidithiobacillusspecies in response to challenging metal-rich environments and the mechanisms addressing how metal resistance genes originated and evolved inAcidithiobacillusare still lacking. The findings of this study revealed a fascinating phenomenon of putative cross-phylum HGT, suggesting thatAcidithiobacillusspp. recruited and consolidated additional novel functionalities during the adaption to challenging environments via HGT, gene duplication, and purifying selection. Altogether, the insights gained in this study have improved our understanding of the metal resistance strategies ofAcidithiobacillusspp.


2007 ◽  
Vol 12 (8) ◽  
pp. 358-367 ◽  
Author(s):  
Douglas E. Soltis ◽  
Hong Ma ◽  
Michael W. Frohlich ◽  
Pamela S. Soltis ◽  
Victor A. Albert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document