A Revised Evolutionary History of the CYP1A Subfamily: Gene Duplication, Gene Conversion, and Positive Selection

2006 ◽  
Vol 62 (6) ◽  
pp. 708-717 ◽  
Author(s):  
Heather M. H. Goldstone ◽  
John J. Stegeman
1990 ◽  
Vol 3 (1) ◽  
pp. 145
Author(s):  
DJ Colgan

This paper is a review of the use of information regarding the presence of duplicate genes and their regulation in systematics. The review concentrates on data derived from protein electrophoresis and restriction fragment length polymorphism analysis. The appearance of a duplication in a subset of a group of species implies that the members of the subset belong to the same clade. Suppression of the duplication may render this clade apparently paraphyletic, but may itself be informative of relations within the lineage through patterns of loss of expression in all, or some tissues, or through restrictions of the formation of functional heteropolymers in polymeric enzymes. Examples are given of studies which have used such information to establish phylogenetic hypotheses at the family level, to identify an auto- or allo-polyploid origin of polyploid species and to determine whether there have been single or multiple origins of such species. The likelihood of homoplasy in the patterns of appearance and regulation of duplicates depends on the molecular basis of the duplication. In particular, the contrast between the expected consequences of tandem duplication and the expression of pseudogenes emphasises the value of determining the mechanism of the original duplication. Many instances of sporadic gene duplication are now known, and polyploidisation is a common event in the evolutionary history of both plants and animals. So the opportunities to discover duplicationrelated characters will arise in many systematic studies. A program is presented to increase the chances that such useful information will be recognisable during the studies.


2019 ◽  
Vol 286 (1897) ◽  
pp. 20182929 ◽  
Author(s):  
Elena A. Ritschard ◽  
Robert R. Fitak ◽  
Oleg Simakov ◽  
Sönke Johnsen

Coleoid cephalopods show unique morphological and neural novelties, such as arms with tactile and chemosensory suckers and a large complex nervous system. The evolution of such cephalopod novelties has been attributed at a genomic level to independent gene family expansions, yet the exact association and the evolutionary timing remain unclear. In the octopus genome, one such expansion occurred in the G-protein-coupled receptors (GPCRs) repertoire, a superfamily of proteins that mediate signal transduction. Here, we assessed the evolutionary history of this expansion and its relationship with cephalopod novelties. Using phylogenetic analyses, at least two cephalopod- and two octopus-specific GPCR expansions were identified. Signatures of positive selection were analysed within the four groups, and the locations of these sequences in the Octopus bimaculoides genome were inspected. Additionally, the expression profiles of cephalopod GPCRs across various tissues were extracted from available transcriptomic data. Our results reveal the evolutionary history of cephalopod GPCRs. Unexpanded cephalopod GPCRs shared with other bilaterians were found to be mainly nervous tissue specific. By contrast, duplications that are shared between octopus and the bobtail squid or specific to the octopus' lineage generated copies with divergent expression patterns devoted to tissues outside of the brain. The acquisition of novel expression domains was accompanied by gene order rearrangement through either translocation or duplication and gene loss. Lastly, expansions showed signs of positive selection and some were found to form tandem clusters with shared conserved expression profiles in cephalopod innovations such as the axial nerve cord. Altogether, our results contribute to the understanding of the molecular and evolutionary history of signal transduction and provide insights into the role of this expansion during the emergence of cephalopod novelties and/or adaptations.


2013 ◽  
Vol 30 (6) ◽  
pp. 1263-1269 ◽  
Author(s):  
Etienne Simon-Loriere ◽  
Edward C. Holmes

2021 ◽  
Author(s):  
Raul Buisan ◽  
Juan Moriano ◽  
Alejandro Andirko ◽  
Cedric Boeckx

Analyses of ancient DNA from extinct hominins have provided unique insights into the complex evolutionary history of Homo sapiens, intricately related to that of the Neanderthals and the Denisovans as revealed by several instances of admixture events. These analyses have also allowed the identification of introgression deserts: genomic regions in our species that are depleted of `archaic' haplotypes. The presence of genes like FOXP2 in these deserts has been taken to be suggestive of brain-related functional differences between Homo species. Here, we seek a deeper characterization of these regions, taking into account signals of positive selection in our lineage. Analyzing publicly available transcriptomic data from the human brain at different developmental stages, we found that structures outside the cerebral neocortex, and especially the cerebellum and the striatum at prenatal stages, show the most divergent transcriptomic profiles when considering genes under positive selection within introgression deserts.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41175 ◽  
Author(s):  
Matthew A. Carrigan ◽  
Oleg Uryasev ◽  
Ross P. Davis ◽  
LanMin Zhai ◽  
Thomas D. Hurley ◽  
...  

2006 ◽  
Vol 34 (2) ◽  
pp. 257-262 ◽  
Author(s):  
C.A.M. Semple ◽  
K. Taylor ◽  
H. Eastwood ◽  
P.E. Barran ◽  
J.R. Dorin

We have examined the evolution of the genes at the major human β-defensin locus and the orthologous loci in a range of other primates and mammals. For the first time, these data allow us to examine selective episodes in the more recent evolutionary history of this locus as well as in the ancient past. We have used a combination of maximum-likelihood-based tests and a maximum-parsimony-based sliding window approach to give a detailed view of the varying modes of selection operating at this locus. We provide evidence for strong positive selection soon after the duplication of these genes within an ancestral mammalian genome. During the divergence of primates, however, variable selective pressures have acted on β-defensin genes in different evolutionary lineages, with episodes of both negative and, more rarely, positive selection. Positive selection appears to have been more common in the rodent lineage, accompanying the birth of novel rodent-specific β-defensin gene clades. Sites in the second exon have been subject to positive selection and, by implication, are important in functional diversity. A small number of sites in the mature human peptides were found to have undergone repeated episodes of selection in different primate lineages. Particular sites were consistently implicated by multiple methods at positions throughout the mature peptides. These sites are clustered at positions that are predicted to be important for the function of β-defensins.


Sign in / Sign up

Export Citation Format

Share Document