scholarly journals Fully Coupled 6 Degree-of-Freedom Control of an Over-Actuated Autonomous Underwater Vehicle

Author(s):  
Matthew Kokegei ◽  
Fangpo He ◽  
Karl Sammut
2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881940 ◽  
Author(s):  
Liwei Kou ◽  
Ji Xiang ◽  
Yanjun Li ◽  
Jingwei Bian

A quadrotor-like autonomous underwater vehicle that is similar to, yet different from quadrotor unmanned aerial vehicles, has been reported recently. This article investigates the stability and nonlinear controllability properties of the vehicle. First, the 12-degree-of-freedom model of the vehicle deploying an X shape actuation system is developed. Then, a stability property is investigated showing that the vehicle cannot be stabilized by a time invariant smooth state feedback law. After that, by adopting a nonlinear controllability analysis tool in geometric control theory, the small-time local controllability of the vehicle is analyzed for a variety of cases, including the vertical plane motion, the horizontal plane motion, and the three-dimensional space motion. Finally, different small-time local controllability conditions for different cases are developed. The result shows that the small-time local controllability holds for vertical plane motion and horizontal plane motion. However, the full degree of freedom kinodynamics model (i.e. 12 states) of the vehicle does not satisfy the small-time local controllability from zero-velocity states.


2018 ◽  
Vol 2 (1) ◽  
pp. 41
Author(s):  
Teguh Herlambang ◽  
Subchan Subchan

Penelitian dan pengembangan dari Autonomous Underwater Vehicle cukup banyak diantaranya terkait sistem kendali, navigasi dan hidrodinamika. Pada umunya persamaan gerak AUV adalah 6 derajat kebebasan/Degree of Freedom (DOF) yang terdiri dari gerak translasi (surge, sway, heave) dan gerak rotasi (roll, pitch, yaw). Pada paper ini dikembangkan metode estimasi gerak tranlasi dari ITSUNUSA AUV dengan metode Ensemble Kalman Filter. Pada paper ini juga dibandingkan berdasarakn pembangkian julah ensemble. Hasil simulasi menunjukkan bahwa yang terakurat adalah dengan membangkitkan 300 ensemble dengan error kecepatan untuk gerak surge adalah 0,082%, gerak sway 0.498% dan gerak heave 0.26%.


2015 ◽  
Vol 74 (9) ◽  
Author(s):  
Mohamad Haniff Harun ◽  
Mohd Shahrieel Mohd Aras ◽  
Mohd Farriz Md. Basar ◽  
Shahrum Shah Abdullah ◽  
Khalil Azha Mohd Annuar

This paper describes the synchronization of compass module with pressure and temperature sensor system for an Autonomous Underwater Vehicle (AUV). In general this project is the result of a combination of existing technology for underwater sensory to produce a complete system that aims to identify the position of the AUVs based on AUV degree of freedom. This can be done with the help of compass module that can find and order the AUV is moving at a fixed angle. This created a system that aims to obtain data on pressure and temperature in the AUV. Not only that, the project also aims to prove that the relationship between pressure and depth of the water and the relationship between pressure and temperature. All data gathered is capable of helping in the preparation of an AUV that can accommodate high pressure according to the depth to destination.  


Sign in / Sign up

Export Citation Format

Share Document