scholarly journals Biological Identifications Through DNA Barcodes

Author(s):  
Hassan A. I. Ramadan ◽  
Nabih A.
Keyword(s):  
Nature ◽  
2004 ◽  
Author(s):  
Helen Pearson
Keyword(s):  

2018 ◽  
Vol 8 (1) ◽  
pp. 222-232 ◽  
Author(s):  
R. V. Yakovlev ◽  
N. A. Shapoval ◽  
G. N. Kuftina ◽  
A. V. Kulak ◽  
S. V. Kovalev

The Proclossiana eunomia (Esper, 1799) complex is currently composed of the several subspecies distributed throughout Palaearсtic region and North America. Despite the fact that some of the taxa have differences in wing pattern and body size, previous assumptions on taxonomy not supported by molecular data. Therefore, the identity of certain populations of this complex has remained unclear and the taxonomic status of several recently described taxa is debated. Here, we provide insights into systematics of some Palaearctic members of this group using molecular approach, based on the analysis of the barcoding fragment of the COI gene taking into account known morphological differences.


2020 ◽  
Vol 840 ◽  
pp. 162-170
Author(s):  
Ganies Riza Aristya ◽  
Fauzana Putri ◽  
Rina Sri Kasiamdari ◽  
Arni Musthofa

Sugarcane (Saccharum officinarum L.) is an agricultural commodities with a great extent of diversity and high economic value. In Indonesia, the great extent of diversity of sugarcane is evidenced by a large number of cultivars cultivated. Sugarcane diversities at the molecular level can be seen using DNA barcodes, one of which is the matK. The purpose of the study was to identify and characterize matK and reconstruct the phylogenetic tree to determine the phylogeny of 24 sugarcane cultivars Indonesia. matK was amplified using the PCR method with matK F-5’ATGATTAATTAAGAGTAAGAGGAT-3’ and matK R-5’AATGCAAAAATTCGAAGGGT-3. Results showed that the matK gene was successfully amplified as many as 1531 bp. The sequencing process was done to determine the nucleotide sequence and compared with those of the GenBank database. It showed that the samples used had a similarity of 98.87%-99.44% to that of matK in Saccharum officinarum, Saccharum hybrid cultivar and Saccharum spontaneum. Reconstruction of the phylogenetic tree showed that the samples used were located in the same clade with a zero genetic distance, while all the references from NCBI were also located in the same clade. The analysis of genetic variation indicated that it had no haplotype value.


Nano Letters ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1694-1701 ◽  
Author(s):  
Sung Hyun Kim ◽  
Hyunwoo Kim ◽  
Hawoong Jeong ◽  
Tae-Young Yoon

2021 ◽  
Vol 20 (3) ◽  
pp. 325-339
Author(s):  
Frederick Witfeld ◽  
Dominik Begerow ◽  
Marco Alexandre Guerreiro

AbstractThermophilic, thermotolerant and heat-resistant fungi developed different physiological traits, enabling them to sustain or even flourish under elevated temperatures, which are life-hostile for most other eukaryotes. With the growing demand of heat-stable molecules in biotechnology and industry, the awareness of heat-adapted fungi as a promising source of respective enzymes and biomolecules is still increasing. The aim of this study was to test two different strategies for the efficient isolation and identification of distinctly heat-adapted fungi from easily accessible substrates and locations. Eight compost piles and ten soil sites were sampled in combination with different culture-dependent approaches to describe suitable strategies for the isolation and selection of thermophilous fungi. Additionally, an approach with a heat-shock treatment, but without elevated temperature incubation led to the isolation of heat-resistant mesophilic species. The cultures were identified based on morphology, DNA barcodes, and microsatellite fingerprinting. In total, 191 obtained isolates were assigned to 31 fungal species, from which half are truly thermophilic or thermotolerant, while the other half are heat-resistant fungi. A numerous amount of heat-adapted fungi was isolated from both compost and soil samples, indicating the suitability of the used approaches and that the richness and availability of those organisms in such environments are substantially high.


2021 ◽  
Author(s):  
Marco Potowski ◽  
Verena Kunig ◽  
Lukas Eberlein ◽  
Alexandros Vakalopoulos ◽  
Stefan Kast ◽  
...  
Keyword(s):  

Author(s):  
Marco Potowski ◽  
Verena Kunig ◽  
Lukas Eberlein ◽  
Alexandros Vakalopoulos ◽  
Stefan Kast ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document