scholarly journals Adult Stem Cell Niches — Stem Cells in the Female Reproductive System

Author(s):  
Mirjana Kessler ◽  
Rike Zietlow ◽  
Thomas F. Meyer
Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 225
Author(s):  
Claire Racaud-Sultan ◽  
Nathalie Vergnolle

In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients.


2007 ◽  
Vol 16 (8) ◽  
pp. 867-873 ◽  
Author(s):  
David J. Eve ◽  
Paul R. Sanberg

One of the fastest growing fields in researching treatments for neurodegenerative and other disorders is the use of stem cells. These cells are naturally occurring and can be obtained from three different stages of an organism's life: embryonic, fetal, and adult. In the US, political doctrine has restricted use of federal funds for stem cells, enhancing research towards an adult source. In order to determine how this legislation may be represented by the stem cell field, a retrospective analysis of stem cell articles published in the journal Cell Transplantation over a 2-year period was performed. Cell Transplantation is considered a translational journal from preclinical to clinical, so it was of interest to determine the publication outcome of stem cell articles 6 years after the US regulations. The distribution of the source of stem cells was found to be biased towards the adult stage, but relatively similar over the embryonic and fetal stages. The fetal stem cell reports were primarily neural in origin, whereas the adult stem cell ones were predominantly mesenchymal and used mainly in neural studies. The majority of stem cell studies published in Cell Transplantation were found to fall under the umbrella of neuroscience research. American scientists published the most articles using stem cells with a bias towards adult stem cells, supporting the effect of the legislation, whereas Europe was the leading continent with a bias towards embryonic and fetal stem cells, where research is “controlled” but not restricted. Japan was also a major player in the use of stem cells. Allogeneic transplants (where donor and recipient are the same species) were the most common transplants recorded, although the transplantation of human-derived stem cells into rodents was the most common specific transplantation performed. This demonstrates that the use of stem cells is an increasingly important field (with a doubling of papers between 2005 and 2006), which is likely to develop into a major therapeutic area over the next few decades and that funding restrictions can affect the type of research being performed.


2019 ◽  
pp. 107-133
Author(s):  
Elena Salvi ◽  
Raffaele Dello Ioio ◽  
Laila Moubayidin

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdel Kader A. Zaki ◽  
Tariq I. Almundarij ◽  
Faten A. M. Abo-Aziza

AbstractClinical applications of cell therapy and tissue regeneration under different conditions need a multiplicity of adult stem cell sources. Up to date, little is available on the comparative isolation, characterization, proliferation, rapid amplification, and osteogenic/adipogenic differentiation of rat mesenchymal stem cells (MSCs) isolated from living bulge cells of the hair follicle (HF) and bone marrow (BM) from the same animal. This work hopes to use HF-MSCs as an additional adult stem cell source for research and application. After reaching 80% confluence, the cell counting, viability %, and yields of HF-MSCs and BM-MSCs were nearly similar. The viability % was 91.41 ± 2.98 and 93.11 ± 3.06 while the cells yield of initial seeding was 33.15 ± 2.76 and 34.22 ± 3.99 and of second passage was 28.76 ± 1.01 and 29.56 ± 3.11 for HF-MSCs and BM-MSCs respectively. Clusters of differentiation (CDs) analysis revealed that HF-MSCs were positively expressed CD34, CD73 and CD200 and negatively expressed CD45. BM-MSCs were positively expressed CD73 and CD200 and negatively expressed of CD34 and CD45. The proliferation of HF-MSCs and BM-MSCs was determined by means of incorporation of Brd-U, population doubling time (PDT) assays and the quantity of formazan release. The percentage of Brd-U positive cells and PDT were relatively similar in both types of cells. The proliferation, as expressed by the quantity of formazan assay in confluent cells, revealed that the quantity of release by BM-MSCs was slightly higher than HF-MSCs. Adipogenic differentiated BM-MSCs showed moderate accumulation of oil red-O stained lipid droplets when compared to that of HF-MSCs which exhibited high stain. The total lipid concentration was significantly higher in adipogenic differentiated HF-MSCs than BM-MSCs (P < 0.05). It was found that activity of bone alkaline phosphatase and calcium concentration were significantly higher (P < 0.01 and P < 0.05 respectively) in osteogenic differentiated BM-MSCs than that of HF-MSCs. The present findings demonstrate that the HF-MSCs are very similar in most tested characteristics to BM-MSCs with the exception of differentiation. Additionally; no issues have been reported during the collection of HF-MSCs. Therefore, the HF may represent a suitable and accessible source for adult stem cells and can be considered an ideal cell source for adipogenesis research.


2018 ◽  
Vol 19 (10) ◽  
pp. 2917 ◽  
Author(s):  
Diletta Overi ◽  
Guido Carpino ◽  
Vincenzo Cardinale ◽  
Antonio Franchitto ◽  
Samira Safarikia ◽  
...  

Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Filippo Artoni ◽  
Rebecca E Kreipke ◽  
Ondina Palmeira ◽  
Connor Dixon ◽  
Zachary Goldberg ◽  
...  

Aging stem cells lose the capacity to properly respond to injury and regenerate their residing tissues. Here, we utilized the ability of Drosophila melanogaster germline stem cells (GSCs) to survive exposure to low doses of ionizing radiation (IR) as a model of adult stem cell injury and identified a regeneration defect in aging GSCs: while aging GSCs survive exposure to IR, they fail to reenter the cell cycle and regenerate the germline in a timely manner. Mechanistically, we identify foxo and mTOR homologue, Tor as important regulators of GSC quiescence following exposure to ionizing radiation. foxo is required for entry in quiescence, while Tor is essential for cell cycle reentry. Importantly, we further show that the lack of regeneration in aging germ line stem cells after IR can be rescued by loss of foxo.


Sign in / Sign up

Export Citation Format

Share Document