scholarly journals The Apoptotic Microtubule Network During the Execution Phase of Apoptosis

Author(s):  
Manuel Oropesa Ávila ◽  
Alejandro Fernández Vega ◽  
Juan Garrido Maraver ◽  
Marina Villanueva Paz ◽  
Isabel De Lavera ◽  
...  
APOPTOSIS ◽  
2007 ◽  
Vol 12 (7) ◽  
pp. 1195-1208 ◽  
Author(s):  
José A. Sánchez-Alcázar ◽  
Ángeles Rodríguez-Hernández ◽  
Mario D. Cordero ◽  
Daniel J. M. Fernández-Ayala ◽  
Gloria Brea-Calvo ◽  
...  

Author(s):  
Heide Schatten ◽  
Neidhard Paweletz ◽  
Ron Balczon

To study the role of sulfhydryl group formation during cell cycle progression, mammalian tissue culture cells (PTK2) were exposed to 100¼M 2-mercaptoethanol for 2 to 6 h during their exponential phase of growth. The effects of 2-mercaptoethanol on centrosomes, chromosomes, microtubules, membranes and intermediate filaments were analyzed by transmission electron microscopy (TEM) and by immunofluorescence microscopy (IFM) methods using a human autoimmune antibody directed against centrosomes (SPJ), and a mouse monoclonal antibody directed against tubulin (E7). Chromosomes were affected most by this treatment: premature chromosome condensation was detected in interphase nuclei, and the structure in mitotic chromosomes was altered compared to control cells. This would support previous findings in dividing sea urchin cells in which chromosomes are arrested at metaphase while the centrosome splitting cycle continues. It might also support findings that certairt-sulfhydryl-blocking agents block cyclin destruction. The organization of the microtubule network was scattered probably due to a looser organization of centrosomal material at the interphase centers and at the mitotic poles.


2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


2013 ◽  
Vol 65 (2) ◽  
pp. 465-479 ◽  
Author(s):  
David S. Domozych ◽  
Iben Sørensen ◽  
Carly Sacks ◽  
Hannah Brechka ◽  
Amanda Andreas ◽  
...  

2008 ◽  
Vol 10 (14-15) ◽  
pp. 1440-1449 ◽  
Author(s):  
Margaret E. Walker ◽  
Elizabeth E. Hjort ◽  
Sherri S. Smith ◽  
Abhishek Tripathi ◽  
Jessica E. Hornick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document