scholarly journals Evaluation of Robotic Force Control Strategies Using an Open Architecture Test Facility

Author(s):  
Michael Short
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Gas Carry-Under (GCU) is one of the undesirable phenomena that exists in the GLCC©1 even within the Operational Envelope (OPEN) for liquid carry-over. Few studies that are available on GLCC© GCU have been carried out when the GLCC© is operated in a metering loop configuration characterized by recombined outlets. In such configurations the gas and the liquid outlets of the GLCC are recombined downstream which acts as passive level control. However, studies have shown that the GLCC© OPEN increases significantly when active control strategies are employed. There has not been a systematic study aimed at analyzing the effect of control on the GCU in the GLCC. This study compares the previously published GLCC GCU swirling flow mechanism under recombination outlet configuration with data taken under the separated outlet configuration (control configuration). Experimental investigations for GCU are conducted in a state-of-the-art test facility for air-water and air-oil flow incorporating pressure and level control configurations. The experiments are carried out using a 3″ diameter GLCC© equipped with 3 sequential trap sections to measure simultaneously the Gas Volume Fraction (GVF) and gas evolution in the lower part of the GLCC. Also, gas trap sections are installed in the liquid leg of the GLCC© to measure simultaneously the overall GCU. The liquid level was controlled at 6″ below the GLCC© inlet for all experiments using various control strategies. Tangential wall jet impingement is the cause for entrainment of gas, thereby leading to GCU. 3 different flow mechanisms have been identified in the lower part of the GLCC and have significant effect on the GCU. Viscosity and surface tension are observed to affect the GCU. The extensive acquired data shed light on the complex flow behavior in the lower part of the GLCC© and its effect on the GCU of the GLCC©.


2013 ◽  
Vol 03 (02) ◽  
pp. 11-18 ◽  
Author(s):  
Frank Domroes ◽  
Carsten Krewet ◽  
Bernd Kuhlenkoetter

2019 ◽  
Vol 27 (4) ◽  
pp. 267-275
Author(s):  
Yan Jin ◽  
JiWon Seong ◽  
YoungChae Cho ◽  
BumChul Yoon

Aging-induced degeneration of the neuromuscular system would result in deteriorated complex muscle force coordination and difficulty in executing daily activities that require both hands. The aim of this study was to provide a basic description of how aging and dual-task activity would affect the motor control strategy during bimanual isometric force control in healthy adults. In total, 17 young adults (aged 25.1 ± 2.4 years) and 14 older adults (aged 72.6 ± 3.4 years) participated in the study. The subjects were instructed to press both hands simultaneously to match the 1 Hz sine curve force under two conditions (with or without calculation) with continuous visual feedback. Differences in bimanual motor synergy, bimanual coordination, force accuracy, force variability, and calculation speed were compared. This study found that the specific motor control strategy of older adults involved a decreased bimanual force control ability with both increased VUCM and VORT, and was not influenced by dual tasking. These findings might have implications for establishing interventions for aging-induced hand force control deficits.


2019 ◽  
Vol 32 (10) ◽  
pp. 2368-2382 ◽  
Author(s):  
Xiaohu XU ◽  
Dahu ZHU ◽  
Haiyang ZHANG ◽  
Sijie YAN ◽  
Han DING

2013 ◽  
Vol 210 ◽  
pp. 178-185 ◽  
Author(s):  
Zenon Hendzel ◽  
Andrzej Burghardt ◽  
Piotr Gierlak ◽  
Marcin Szuster

This article presents an application of the hybrid position-force control of the robotic manipulator with use of artificial neural networks and fuzzy logic systems in complex control system. The mathematical description of the manipulator and a closed-loop system are presented. In the position control were used the PD controller and artificial neural networks, which compensate nonlinearities of the manipulator. The paper presents mainly the application of various strategies of the force control. The force control strategies using conventional controllers P, PI, PD, PID and fuzzy controllers are presented and discussed. All of the control methods were verified on the real object in order to make a comparison of a control quality.


Author(s):  
Hu¨seyin Yaltirik ◽  
A. Kerim Kar ◽  
Bu¨lent Ekici

Nowadays robots are used in various areas. There are extremely important applications where the robot arm tip comes in contact with the environment or an object. During controlling an object, static or in motion, the object or the robot arm should not be damaged. The interaction forces are important in such conditions. Whether the task succeeds or fails depends on how accurate the interaction forces are controlled. The interaction forces are changed depending on the motion of the robot arm. Therefore, to control interaction forces a force control algorithm must be developed. In this research a force control algorithm will first be developed for the quasi-static contact tasks, then it will be extended to the dynamic cases. The goal of this study is to compare force control strategies to achieve the desired interaction forces between the robot arm tip (end-effector) and the environment during contact tasks. Taguchi L9 method is used for comparison of selected force control algorithms which are modeled in SIMULINK MATLAB program.


2019 ◽  
Vol 27 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Yan Jin ◽  
Minhee Kim ◽  
Sejun Oh ◽  
BumChul Yoon

This study aimed to provide a basic description of the motor control strategy during bimanual isometric force control in healthy young adults. Thirty healthy young adults (mean age: 27.4 ± 3.7 years) participated in the study. The subjects were instructed to press both hands simultaneously to match the target force level of 5%, 25%, and 50% bimanual maximum voluntary force using continuous visual feedback. Bimanual motor synergy and bimanual coordination, as well as force asymmetry, force accuracy, and force variability were compared. This study identified the specific motor control strategy of healthy young adults during bimanual isometric force control, indicating that they proportionally increased “good” and “bad” variabilities, resulting in comparable bimanual motor synergy as the target force level increased.


Sign in / Sign up

Export Citation Format

Share Document