scholarly journals C-Band Sea Ice SAR Classification Based on Segmentwise Edge Features

Author(s):  
Juha Karvonen
Keyword(s):  
Sea Ice ◽  



Author(s):  
E. G. Rightor ◽  
G. P. Young

Investigation of neat polymers by TEM is often thwarted by their sensitivity to the incident electron beam, which also limits the usefulness of chemical and spectroscopic information available by electron energy loss spectroscopy (EELS) for these materials. However, parallel-detection EELS systems allow reduced radiation damage, due to their far greater efficiency, thereby promoting their use to obtain this information for polymers. This is evident in qualitative identification of beam sensitive components in polymer blends and detailed investigations of near-edge features of homopolymers.Spectra were obtained for a poly(bisphenol-A carbonate) (BPAC) blend containing poly(tetrafluoroethylene) (PTFE) using a parallel-EELS and a serial-EELS (Gatan 666, 607) for comparison. A series of homopolymers was also examined using parallel-EELS on a JEOL 2000FX TEM employing a LaB6 filament at 100 kV. Pure homopolymers were obtained from Scientific Polymer Products. The PTFE sample was commercial grade. Polymers were microtomed on a Reichert-Jung Ultracut E and placed on holey carbon grids.





2008 ◽  
Author(s):  
A Martin ◽  
JA Hall ◽  
R O’Toole ◽  
SK Davy ◽  
KG Ryan


2016 ◽  
Author(s):  
Marta Vázquez ◽  
Raquel Nieto ◽  
Anita Drumond ◽  
Luis Gimeno


2012 ◽  
Vol 19 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Yinke Dou ◽  
Xiaomin Chang

Abstract Ice thickness is one of the most critical physical indicators in the ice science and engineering. It is therefore very necessary to develop in-situ automatic observation technologies of ice thickness. This paper proposes the principle of three new technologies of in-situ automatic observations of sea ice thickness and provides the findings of laboratory applications. The results show that the in-situ observation accuracy of the monitor apparatus based on the Magnetostrictive Delay Line (MDL) principle can reach ±2 mm, which has solved the “bottleneck” problem of restricting the fine development of a sea ice thermodynamic model, and the resistance accuracy of monitor apparatus with temperature gradient can reach the centimeter level and research the ice and snow substance balance by automatically measuring the glacier surface ice and snow change. The measurement accuracy of the capacitive sensor for ice thickness can also reach ±4 mm and the capacitive sensor is of the potential for automatic monitoring the water level under the ice and the ice formation and development process in water. Such three new technologies can meet different needs of fixed-point ice thickness observation and realize the simultaneous measurement in order to accurately judge the ice thickness.





Sign in / Sign up

Export Citation Format

Share Document