Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport

2016 ◽  
Author(s):  
Marta Vázquez ◽  
Raquel Nieto ◽  
Anita Drumond ◽  
Luis Gimeno
2018 ◽  
Vol 44 (2) ◽  
pp. 659 ◽  
Author(s):  
M. Vázquez ◽  
R. Nieto ◽  
A. Drumond ◽  
L. Gimeno

The Arctic Ocean has suffered extreme reductions in sea ice in recent decades, and these observed changes suggest implications in terms of moisture transport. The Arctic region is a net sink of moisture in terms of the total hydrological cycle, however, its role as a moisture source for specific regions has not been extensively studied. Our results show that 80% of the moisture supply from the Arctic contributes to precipitation over itself, representing about 8% of the global moisture supply to the Arctic, the remaining 20% is distributed in the surrounding. A reduction in the sea ice extent could make the Arctic Ocean a slightly higher source of moisture to itself or to the surrounding areas. The analysis of the areas affected by Arctic moisture transport is important for establishing those areas vulnerable to change in a framework of a growing sea ice decline. To this end, the Lagrangian model FLEXPART was used in this work to establish the main sinks for the Arctic Ocean, focusing on the moisture transport from this region. The results suggest that most of the moisture loss occurs locally over the Arctic Ocean itself, especially in summer. Some moisture contribution from the Arctic Ocean to continental areas in North America and Eurasia is also noted in autumn and winter especially from Central Arctic, the East Siberian Sea, the Laptev, Kara, Barents, East Greenland and Bering Seas, and the Sea of Okhotsk.


2019 ◽  
Vol 10 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore (i) whether the MTP from the main moisture sources for the Arctic region is linked with inter-annual fluctuations in the extent of Arctic sea ice superimposed on its decline and (ii) the role of extreme MTP events in the inter-daily change in the Arctic sea ice extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest (1) that ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring and, (2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons extreme humidity transport therefore contributes to Arctic sea ice melting. These patterns differ sharply from that linked to the decline on a long-range scale, especially in summer when the opposite trend applies, as ice melt is favoured by a decrease in moisture transport for this season at this scale.


2020 ◽  
Author(s):  
Tiina Nygård ◽  
Tuomas Naakka ◽  
Timo Vihma

<p>The Arctic has experienced regionally and seasonally variable moistening of the atmosphere during the recent decades. Compared to the accompanying amplified warming and dramatic sea ice decline, the moistening has so far remained less studied.</p><p>We address the regional and seasonal trends in the horizontal moisture transport in the Arctic during the last four decades, in 1979–2018, based on data of ERA5 reanalysis of European Centre for Medium-Range Weather Forecasts. We show that regional trends in moisture transport are large and mainly driven by changes in atmospheric circulation. We demonstrate that the regional moistening patterns in the Arctic during the last four decades have dominantly been shaped by these strong trends in horizontal moisture transport. Changes in local evaporation in the Arctic have only had a minor role in shaping the moistening patterns. We show that increasing trends in evaporation have been restricted to the vicinity of sea-ice margin over a limited period during the local sea-ice decline, and this step-wise increase has been followed by negative trends in evaporation in open sea, due to suppressing effect of horizontal moisture transport.</p><p>Both evaporation and the horizontal moisture transport have been affected by the diminishing sea-ice cover during the cold seasons from autumn to spring, and their trends have been dependent on the flow direction. We summarize the current understanding and the new results of flow-dependency of the trends in moisture transport and evaporation near the sea-ice margin, and the cloud response to those.</p><p>For the first time, we provide a detailed picture of both the drastic regional changes in the moisture transport within the Arctic and changes in local evaporation, and demonstrate large impacts of these changes on the climate of the Arctic. We suggest that also in the future, moisture and cloud distributions in the Arctic are expected to respond to changes in atmospheric pressure patterns; circulation and moisture transport will also control where and when efficient surface evaporation can occur.</p>


2020 ◽  
Vol 33 (16) ◽  
pp. 6793-6807
Author(s):  
Tiina Nygård ◽  
Tuomas Naakka ◽  
Timo Vihma

AbstractAlong with the amplified warming and dramatic sea ice decline, the Arctic has experienced regionally and seasonally variable moistening of the atmosphere. Based on reanalysis data, this study demonstrates that the regional moistening patterns during the last four decades, 1979–2018, were predominantly shaped by the strong trends in horizontal moisture transport. Our results suggest that the trends in moisture transport were largely driven by changes in atmospheric circulation. Trends in evaporation in the Arctic had a smaller role in shaping the moistening patterns. Both horizontal moisture transport and local evaporation have been affected by the diminishing sea ice cover during the cold seasons from autumn to spring. Increases in evaporation have been restricted to the vicinity of the sea ice margin over a limited period during the local sea ice decline. For the first time we demonstrate that, after the sea ice has disappeared from a region, evaporation over the open sea has had negative trends due to the effect of horizontal moisture transport to suppress evaporation. Near the sea ice margin, the trends in moisture transport and evaporation and the cloud response to those have been circulation dependent. The future moisture and cloud distributions in the Arctic are expected to respond to changes in atmospheric pressure patterns; circulation and moisture transport will also control where and when efficient surface evaporation can occur.


2018 ◽  
Vol 9 (2) ◽  
pp. 611-625 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.


2020 ◽  
Author(s):  
Melanie Lauer ◽  
Annette Rinke ◽  
Irina Gorodetskaya ◽  
Susanne Crewell

<p>There are many factors which could contribute to the Arctic warming: feedback processes like the lapse rate and ice-albedo feedback, the increasing downward longwave radiation caused by clouds and water vapour, and the reduction of sea ice in summer that leads to absorption of solar radiation and increase in local evaporation and more clouds. But also the atmospheric moisture transport from the lower latitudes can contribute to the surface warming in high-latitudes. This poleward moisture transport is mostly accomplished by extra-tropical cyclones, with especially strong contribution by the Atmospheric Rivers (ARs). ARs are long, narrow bands of enhanced water vapour transport which are responsible for over 90% of the poleward water vapour transport in and across mid-latitudes. Furthermore, they are responsible for producing significant levels of rain and snow. In addition, the greenhouse effect of water vapour and the formation of clouds increase the downward longwave radiation which can cause a thinning and melting of Arctic sea ice and snow.</p><p>In this study, we investigate the contribution of ARs to Arctic precipitation. Firstly, we look into different case studies for which observational data from the campaigns within the Collaborative Research Center “Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)<sup>3</sup>” exist. The data include enhanced observations at/around Svalbard performed during the ACLOUD and the AFLUX campaigns.</p><p>Previous studies have shown that ARs reaching into the Arctic have different origins, including the Atlantic and the Pacific pathways and also Siberia. Here we examine which pathway is more common and which one transports more moisture into the Arctic for these case studies by using existing AR catalogues from global and polar-specific algorithms. Furthermore, the variability of precipitation influences the surface mass and energy balance of polar sea ice and ice sheets. Therefore, we will analyse the influence of ARs on precipitation in terms of frequency, intensity, and type of precipitation (rain or snow) for the different case studies. For this purpose, we will use reanalyses and observational data for the water vapour transport, total precipitation, rain and snow profiles.The occurrence of ARs and its influence on precipitation will be extended from case studies to the long-term statistics (for at least 10 years).</p>


Ocean Science ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 1081-1102
Author(s):  
Amy Solomon ◽  
Céline Heuzé ◽  
Benjamin Rabe ◽  
Sheldon Bacon ◽  
Laurent Bertino ◽  
...  

Abstract. The Arctic climate system is rapidly transitioning into a new regime with a reduction in the extent of sea ice, enhanced mixing in the ocean and atmosphere, and thus enhanced coupling within the ocean–ice–atmosphere system; these physical changes are leading to ecosystem changes in the Arctic Ocean. In this review paper, we assess one of the critically important aspects of this new regime, the variability of Arctic freshwater, which plays a fundamental role in the Arctic climate system by impacting ocean stratification and sea ice formation or melt. Liquid and solid freshwater exports also affect the global climate system, notably by impacting the global ocean overturning circulation. We assess how freshwater budgets have changed relative to the 2000–2010 period. We include discussions of processes such as poleward atmospheric moisture transport, runoff from the Greenland Ice Sheet and Arctic glaciers, the role of snow on sea ice, and vertical redistribution. Notably, sea ice cover has become more seasonal and more mobile; the mass loss of the Greenland Ice Sheet increased in the 2010s (particularly in the western, northern, and southern regions) and imported warm, salty Atlantic waters have shoaled. During 2000–2010, the Arctic Oscillation and moisture transport into the Arctic are in-phase and have a positive trend. This cyclonic atmospheric circulation pattern forces reduced freshwater content on the Atlantic–Eurasian side of the Arctic Ocean and freshwater gains in the Beaufort Gyre. We show that the trend in Arctic freshwater content in the 2010s has stabilized relative to the 2000s, potentially due to an increased compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the rest of the Arctic Ocean. However, large inter-model spread across the ocean reanalyses and uncertainty in the observations used in this study prevent a definitive conclusion about the degree of this compensation.


2017 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. We have identified the patterns of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains, which better fit with sea ice decline. For this purpose, we studied the different patterns of moisture transport for the case of high/low Arctic sea ice (ASI) extension linked to periods before/after the main change point (CP) in the extension of sea ice. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is not only statistically significant but also consistent with Eulerian fluxes diagnosis, changes in the frequency of circulation types, and known mechanisms of the effects of snowfall or rainfall on ice in the Arctic. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognized in relation to enhanced Arctic precipitation throughout the year in the present climate.


2021 ◽  
Author(s):  
Melanie Lauer ◽  
Annette Rinke ◽  
Irina Gorodetskaya ◽  
Susanne Crewell

<p>The Arctic as a whole has been experiencing significant warming and moistening with several potential factors at play. In general, the warming amplifies the Arctic hydrological cycle. There are two processes which could affect the water vapour content in the Arctic. These are the enhanced local evaporation due to reduced sea-ice concentration and extent and the modified poleward moisture transport from lower latitudes due to changing circulation patterns. An important contribution to the total poleward moisture transport comes from Atmospheric rivers (ARs). ARs have rare occurrence but are associated with anomalously high moisture transport compared to tropical cyclones. ARs are typically associated with not only moisture but also with significant heat advection. They can bring precipitation as rain and/or snow. Moreover, additional feedbacks can occur: the warming effect of the ARs on the surface, coupled with rain lowering surface albedo, can cause thinning and melting of Arctic sea ice and snow. This, in turn, could increase the relative role of the local evaporation compared to the moisture transported from lower latitudes.</p><p>In this study, we investigate the relationship between the poleward moisture transport by ARs and the precipitation in the Arctic. The focus is on AR events during the ACLOUD (May/June 2017) and AFLUX (March/April 2018) campaign within the Collaborative Research Center “Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)<sup>3</sup>”. For these campaigns, existing AR catalogues with the input of ERA5 reanalyses are used to detect AR events. Six ARs are detected: two coming from Siberia and four from the Atlantic.</p><p>These AR events are analysed in terms of the macro- and microphysical precipitation properties, including frequency, intensity, and type of precipitation (rain or snow).  For this purpose, we use ERA5 reanalyses data for the water vapour transport, precipitation amount and type, rain and snow profiles (convective, large-scale, total), as well as vertical profile of hydrometeors. Reanalysis products are evaluated using a set of observational data (satellite data and ground-based remote sensing measurements). This new multi-parameter, multi-dataset set will allow to investigate the occurrence of ARs and its influence on precipitation in the Arctic for the last decades.</p><p> </p><p>“We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –Projektnummer 268020496 –TRR 172, within the Transregional Collaborative Research Center “ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3.“</p>


Sign in / Sign up

Export Citation Format

Share Document