scholarly journals Valorization of Olive Mill Wastewater in the Control of Aphis pomi De Geer 1773 (Hemiptera, Aphididae) Infesting Apple Plants in Nurseries

2021 ◽  
Author(s):  
Nahid Haouache ◽  
Soukaina El Asri ◽  
Adil Asfers ◽  
Abdelhadi Ait Houssa ◽  
Bouchra Tazi ◽  
...  

Olive mill wastewater (OMW), are the liquid residues generated during the extraction of oil by traditional and modern three-phase type crushing units. These effluents are characterized by an acidic pH and composition rich in water, organic matter, minerals and polyphenols. In general, they are directly discharged into natural ecosystems. Their danger is linked to the enormous quantities produced in a short period between October and March. To mitigate the effects of vegetable waters on the environment, their valorization in different areas is discussed. As biopesticides, crude OMW have been shown to be very toxic to Aphis pomi; the LC50 and LC95 varied respectively from 27.17 to 45.59 and from 77.19 to 134.57 mg of OMW/L of water; they vary according to the stage of the aphid considered. The young stages of A. pomi were more sensitive than the elderly are. Therefore, the OMW can be used as a means of controlling aphids. However, before operating on a large scale, it is necessary to repeat the trials in field and assess their impact on non-target organisms and treated crops.

2012 ◽  
Vol 66 (12) ◽  
pp. 2505-2516 ◽  
Author(s):  
J. M. Ochando-Pulido ◽  
A. Martinez-Ferez

Direct disposal of the heavily polluted effluent from olive oil industry (olive mill wastewater, OMW) to the environment or to domestic wastewater treatment plants is actually prohibited in most countries, and conventional treatments are ineffective. Membranes are currently one of the most versatile technologies for environmental quality control. Notwithstanding, studies on OMW reclamation by membranes are still scarce, and fouling inhibition and prediction to improve large-scale membrane performance still remain unresolved. Consequently, adequately targeted pretreatment for the specific binomium membrane-feed, as well as optimized operating conditions for the proper membranes, is today's challenge to ensure threshold flux values. Several membrane materials, configurations and pore sizes have been elucidated, and also different pretreatments including sedimentation, centrifugation, biosorption, sieving, filtration and microfiltration, various types of flocculation as well as advance oxidation processes have been applied so far. Recovery of potential-value compounds, such as a variety of polyphenols highlighting oleuropein and hydroxytyrosol, has been attempted too. All this research should constitute the starting point to proceed with OMW purification beyond recycling for irrigation or depuration for sewer discharge, with the aim of complying with standards to reuse the effluent in the olive oil production process, together with cost-effective recovery of added-value compounds.


Author(s):  
Semih Otles ◽  
Ilknur Selek

Olive mill wastes are signicant environmental problem especially in Mediterranean areas where they are generated in huge quantities in a short period of time. They are phytotoxic materials because of their high phenol, lipid and organic acid concentrations, but these wastes also contain valuable resources that could be recycled such as a large proportion of organic matter and a wide range of nutrients. The effluent from olive oil mills contains a large amount of polyphenols that have antioxidant properties. The market value of these antioxidants is high and they are commonly used in the food, cosmetics, pharmaceutics and chemical industries. For the management of olive mill wastewater (OMW) and other olive residues, various treatment methods can be used. Many scientists work on more efficient and cheaper treatment alternatives. Due to the great variety of compounds in the waste, several technologies to remove the harmful compounds for the environment should be used single or together. Some of the most used OMW treatments are drying / evaporation, forced evaporation, thermal treatment, centrifugation-ultraltration, electrocoagulation, composting, lagooning, adsorption, powdered activated carbon, filtration, sand filtration, membrane filtration, ultrafiltration, precipitation / flocculation, distillation, electrolysis, co-composting, advanced oxidation processes (AOPs) such as ozonation, hydrogen peroxide / ferrous iron oxidation (the so-called Fentons reagent). Several OMW treatment technologies have been developed aiming at the removal of the main toxic organic compounds. A lot of factors must be considered to choose the treatment methods among them the investment, required area, specic training of the workers, noise and odour emissions and seasonality of production.


Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 388
Author(s):  
Hadda Ben Mbarek ◽  
Kamel Gargouri ◽  
Chaker Mbadra ◽  
Rayda Chaker ◽  
Yousra Souidi ◽  
...  

The changes of soil organic matter (SOM) humification induced by long-term combination of tillage and olive mill wastewater (OMW) application compared to natural and cultivated soil have been little investigated. This study aimed to compare effects of no cultivation with natural vegetation soil (NC), tillage (CT1) for 80 years and combination of tillage with OMW application (CT2) for 20 years on SOM humification degree. Fluorescence spectroscopy and UV-visible ratios (E4/E6 and CHA/CFA) were used to study soil humic acids (HAs). The SOM and humification distribution was determined for the whole field area using the Inverse Distance Weighting method. Results showed that SOM content, fluorescence emission area and E4/E6 and CHA/CFA ratios were higher in NC. Tillage reduced SOM amount, molecular size, aromatic condensation and humification degree as shown by the strong correlation between fluorescence area and CHA/CFA ratio in CT1 conversely to E4/E6. Contradictory results between fluorescence emission area and E4/E6 ratio found in NC and CT1 indicated that E4/E6 ratio was not a reliable indicator of SOM humification degree. The SOM amount, CHA/CFA ratio and emission fluorescence area increased conversely to E4/E6 ratio in CT2. This revealed a greatly humified organic matter and aromatic structure condensation with tillage and OMW application. Spatial distribution showed a progressive increase of SOM and CHA/CFA from north-west to south-east linked to the positive relationship between CHA/CFA ratio and SOM amount independent of soil management practices. Soil amended with OMW provided a favourable environment for the development of HAs which improved soil quality. The UV-visible ratio CHA/CFA with fluorescence emission area can be used as parameters to investigate SOM humification degree.


2004 ◽  
Vol 1 (2) ◽  
pp. 159-171 ◽  
Author(s):  
T. J. Battin ◽  
A. Wille ◽  
R. Psenner ◽  
A. Richter

Abstract. Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal), groundwater-fed (krenal) and snow-fed (rhithral) streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment) of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt) of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.


2000 ◽  
Vol 32 (3) ◽  
pp. 222-227 ◽  
Author(s):  
C. Paredes ◽  
A. Roig ◽  
M. P. Bernal ◽  
M. A. Sánchez-Monedero ◽  
J. Cegarra

2012 ◽  
Vol 1 (1) ◽  
Author(s):  
Semih Otles ◽  
Ilknur Selek

Olive mill wastes are signicant environmental problem especially in Mediterranean areas where they are generated in huge quantities in a short period of time. They are phytotoxic materials because of their high phenol, lipid and organic acid concentrations, but these wastes also contain valuable resources that could be recycled such as a large proportion of organic matter and a wide range of nutrients. The effluent from olive oil mills contains a large amount of polyphenols that have antioxidant properties. The market value of these antioxidants is high and they are commonly used in the food, cosmetics, pharmaceutics and chemical industries. For the management of olive mill wastewater (OMW) and other olive residues, various treatment methods can be used. Many scientists work on more efficient and cheaper treatment alternatives. Due to the great variety of compounds in the waste, several technologies to remove the harmful compounds for the environment should be used single or together. Some of the most used OMW treatments are drying / evaporation, forced evaporation, thermal treatment, centrifugation-ultraltration, electrocoagulation, composting, lagooning, adsorption, powdered activated carbon, filtration, sand filtration, membrane filtration, ultrafiltration, precipitation / flocculation, distillation, electrolysis, co-composting, advanced oxidation processes (AOPs) such as ozonation, hydrogen peroxide / ferrous iron oxidation (the so-called Fentons reagent). Several OMW treatment technologies have been developed aiming at the removal of the main toxic organic compounds. A lot of factors must be considered to choose the treatment methods among them the investment, required area, specic training of the workers, noise and odour emissions and seasonality of production.


Sign in / Sign up

Export Citation Format

Share Document