Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes

2000 ◽  
Vol 32 (3) ◽  
pp. 222-227 ◽  
Author(s):  
C. Paredes ◽  
A. Roig ◽  
M. P. Bernal ◽  
M. A. Sánchez-Monedero ◽  
J. Cegarra
2016 ◽  
Vol 17 (4) ◽  
pp. 901-916 ◽  
Author(s):  
Nisreen Tamimi ◽  
Gabriele E. Schaumann ◽  
Dörte Diehl

Soil Research ◽  
2020 ◽  
Vol 58 (4) ◽  
pp. 388
Author(s):  
Hadda Ben Mbarek ◽  
Kamel Gargouri ◽  
Chaker Mbadra ◽  
Rayda Chaker ◽  
Yousra Souidi ◽  
...  

The changes of soil organic matter (SOM) humification induced by long-term combination of tillage and olive mill wastewater (OMW) application compared to natural and cultivated soil have been little investigated. This study aimed to compare effects of no cultivation with natural vegetation soil (NC), tillage (CT1) for 80 years and combination of tillage with OMW application (CT2) for 20 years on SOM humification degree. Fluorescence spectroscopy and UV-visible ratios (E4/E6 and CHA/CFA) were used to study soil humic acids (HAs). The SOM and humification distribution was determined for the whole field area using the Inverse Distance Weighting method. Results showed that SOM content, fluorescence emission area and E4/E6 and CHA/CFA ratios were higher in NC. Tillage reduced SOM amount, molecular size, aromatic condensation and humification degree as shown by the strong correlation between fluorescence area and CHA/CFA ratio in CT1 conversely to E4/E6. Contradictory results between fluorescence emission area and E4/E6 ratio found in NC and CT1 indicated that E4/E6 ratio was not a reliable indicator of SOM humification degree. The SOM amount, CHA/CFA ratio and emission fluorescence area increased conversely to E4/E6 ratio in CT2. This revealed a greatly humified organic matter and aromatic structure condensation with tillage and OMW application. Spatial distribution showed a progressive increase of SOM and CHA/CFA from north-west to south-east linked to the positive relationship between CHA/CFA ratio and SOM amount independent of soil management practices. Soil amended with OMW provided a favourable environment for the development of HAs which improved soil quality. The UV-visible ratio CHA/CFA with fluorescence emission area can be used as parameters to investigate SOM humification degree.


Heliyon ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. e03181 ◽  
Author(s):  
Fatima Zahra El Hassani ◽  
Abdelali Fadile ◽  
Mouna Faouzi ◽  
Abdelah Zinedine ◽  
Mohamed Merzouki ◽  
...  

2021 ◽  
Author(s):  
Nahid Haouache ◽  
Soukaina El Asri ◽  
Adil Asfers ◽  
Abdelhadi Ait Houssa ◽  
Bouchra Tazi ◽  
...  

Olive mill wastewater (OMW), are the liquid residues generated during the extraction of oil by traditional and modern three-phase type crushing units. These effluents are characterized by an acidic pH and composition rich in water, organic matter, minerals and polyphenols. In general, they are directly discharged into natural ecosystems. Their danger is linked to the enormous quantities produced in a short period between October and March. To mitigate the effects of vegetable waters on the environment, their valorization in different areas is discussed. As biopesticides, crude OMW have been shown to be very toxic to Aphis pomi; the LC50 and LC95 varied respectively from 27.17 to 45.59 and from 77.19 to 134.57 mg of OMW/L of water; they vary according to the stage of the aphid considered. The young stages of A. pomi were more sensitive than the elderly are. Therefore, the OMW can be used as a means of controlling aphids. However, before operating on a large scale, it is necessary to repeat the trials in field and assess their impact on non-target organisms and treated crops.


Author(s):  
Cláudio Rocha ◽  
M.A. Soria ◽  
Luís M. Madeira

2021 ◽  
Vol 13 (4) ◽  
pp. 2376
Author(s):  
Dimitris P. Zagklis ◽  
Costas S. Papageorgiou ◽  
Christakis A. Paraskeva

Olive mill wastewater is an important agro-industrial waste with no established treatment method. The authors have developed a phenol separation method that could potentially cover the treatment cost of the waste. The purpose of this study was to identify any economic hotspots in the process, the operational cost and examine the margin of profit for such a process. The equipment cost was scaled for different treatment capacities and then used to estimate the fixed capital investment and the yearly operational cost. The highest purchased equipment cost was identified for the membrane filtration system, while the cost for resin replacement was identified as the highest operational cost. The lifespan of the resin used in the adsorption step was identified as an economic hot spot for the process, with the phenols separation cost ranging from 0.84 to 13.6 €/g of phenols for a resin lifespan of 5–100 adsorption/desorption cycles. The lifespan of the resin proved to be the single most important aspect that determines the phenols separation cost. The price range that was calculated for the product of the process is very promising because of the typical value of antioxidants and the low concentration of phenols that are needed for food supplements and cosmetics.


2021 ◽  
Vol 42 ◽  
pp. 100402
Author(s):  
Jacques Romain Njimou ◽  
John Godwin ◽  
Hugues Pahimi ◽  
S. Andrada Maicaneanu ◽  
Fridolin Kouatchie-Njeutcha ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 800
Author(s):  
Anna Maria Posadino ◽  
Annalisa Cossu ◽  
Roberta Giordo ◽  
Amalia Piscopo ◽  
Wael M Abdel-Rahman ◽  
...  

This work aims to analyze the chemical and biological evaluation of two extracts obtained by olive mill wastewater (OMW), an olive oil processing byproduct. The exploitation of OMW is becoming an important aspect of development of the sustainable olive oil industry. Here we chemically and biologically evaluated one liquid (L) and one solid (S) extract obtained by liquid–liquid extraction followed by acidic hydrolysis (LLAC). Chemical characterization of the two extracts indicated that S has higher phenol content than L. Hydroxytyrosol and tyrosol were the more abundant phenols in both OMW extracts, with hydroxytyrosol significantly higher in S as compared to L. Both extracts failed to induce cell death when challenged with endothelial cells and vascular smooth muscle cells in cell viability experiments. On the contrary, the higher extract dosages employed significantly affected cell metabolic activity, as indicated by the MTT tests. Their ability to counteract H2O2-induced oxidative stress and cell death was assessed to investigate potential antioxidant activities of the extracts. Fluorescence measurements obtained with the reactive oxygen species (ROS) probe H2DCF-DA indicated strong antioxidant activity of the two OMW extracts in both cell models, as indicated by the inhibition of H2O2-induced ROS generation and the counteraction of the oxidative-induced cell death. Our results indicate LLAC-obtained OMW extracts as a safe and useful source of valuable compounds harboring antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document