scholarly journals Agricultural Monitoring in Regional Scale Using Clustering on Satellite Image Time Series

Author(s):  
Renata Ribeiro do Valle Gonçalves ◽  
Jurandir Zullo Junior ◽  
Bruno Ferraz do Amaral ◽  
Elaine Parros Machado Sousa ◽  
Luciana Alvim Santos Romani
2017 ◽  
Vol 55 (4) ◽  
pp. 539-567 ◽  
Author(s):  
Fabian Löw ◽  
Chandrashekhar Biradar ◽  
Olena Dubovyk ◽  
Elisabeth Fliemann ◽  
Akmal Akramkhanov ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 974
Author(s):  
Lorena Alves Santos ◽  
Karine Ferreira ◽  
Michelle Picoli ◽  
Gilberto Camara ◽  
Raul Zurita-Milla ◽  
...  

The use of satellite image time series analysis and machine learning methods brings new opportunities and challenges for land use and cover changes (LUCC) mapping over large areas. One of these challenges is the need for samples that properly represent the high variability of land used and cover classes over large areas to train supervised machine learning methods and to produce accurate LUCC maps. This paper addresses this challenge and presents a method to identify spatiotemporal patterns in land use and cover samples to infer subclasses through the phenological and spectral information provided by satellite image time series. The proposed method uses self-organizing maps (SOMs) to reduce the data dimensionality creating primary clusters. From these primary clusters, it uses hierarchical clustering to create subclusters that recognize intra-class variability intrinsic to different regions and periods, mainly in large areas and multiple years. To show how the method works, we use MODIS image time series associated to samples of cropland and pasture classes over the Cerrado biome in Brazil. The results prove that the proposed method is suitable for identifying spatiotemporal patterns in land use and cover samples that can be used to infer subclasses, mainly for crop-types.


2015 ◽  
Vol 12 (14) ◽  
pp. 4407-4419 ◽  
Author(s):  
J. L. Olsen ◽  
S. Miehe ◽  
P. Ceccato ◽  
R. Fensholt

Abstract. Most regional scale studies of vegetation in the Sahel have been based on Earth observation (EO) imagery due to the limited number of sites providing continuous and long term in situ meteorological and vegetation measurements. From a long time series of coarse resolution normalized difference vegetation index (NDVI) data a greening of the Sahel since the 1980s has been identified. However, it is poorly understood how commonly applied remote sensing techniques reflect the influence of extensive grazing (and changes in grazing pressure) on natural rangeland vegetation. This paper analyses the time series of Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI metrics by comparing it with data from the Widou Thiengoly test site in northern Senegal. Field data include grazing intensity, end of season standing biomass (ESSB) and species composition from sizeable areas suitable for comparison with moderate – coarse resolution satellite imagery. It is shown that sampling plots excluded from grazing have a different species composition characterized by a longer growth cycle as compared to plots under controlled grazing or communal grazing. Also substantially higher ESSB is observed for grazing exclosures as compared to grazed areas, substantially exceeding the amount of biomass expected to be ingested by livestock for this area. The seasonal integrated NDVI (NDVI small integral; capturing only the signal inherent to the growing season recurrent vegetation), derived using absolute thresholds to estimate start and end of growing seasons, is identified as the metric most strongly related to ESSB for all grazing regimes. However plot-pixel comparisons demonstrate how the NDVI/ESSB relationship changes due to grazing-induced variation in annual plant species composition and the NDVI values for grazed plots are only slightly lower than the values observed for the ungrazed plots. Hence, average ESSB in ungrazed plots since 2000 was 0.93 t ha−1, compared to 0.51 t ha−1 for plots subjected to controlled grazing and 0.49 t ha−1 for communally grazed plots, but the average integrated NDVI values for the same period were 1.56, 1.49, and 1.45 for ungrazed, controlled and communal, respectively, i.e. a much smaller difference. This indicates that a grazing-induced development towards less ESSB and shorter-cycled annual plants with reduced ability to turn additional water in wet years into biomass is not adequately captured by seasonal NDVI metrics.


Author(s):  
R. Scrivani ◽  
R. R. V. Goncalves ◽  
L. A. S. Romani ◽  
S. R. M. Oliveira ◽  
E. D. Assad

2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 1.91% to 6.69%. <div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


2021 ◽  
Vol 13 (19) ◽  
pp. 3993
Author(s):  
Zheng Zhang ◽  
Ping Tang ◽  
Weixiong Zhang ◽  
Liang Tang

Satellite Image Time Series (SITS) have become more accessible in recent years and SITS analysis has attracted increasing research interest. Given that labeled SITS training samples are time and effort consuming to acquire, clustering or unsupervised analysis methods need to be developed. Similarity measure is critical for clustering, however, currently established methods represented by Dynamic Time Warping (DTW) still exhibit several issues when coping with SITS, such as pathological alignment, sensitivity to spike noise, and limitation on capacity. In this paper, we introduce a new time series similarity measure method named time adaptive optimal transport (TAOT) to the application of SITS clustering. TAOT inherits several promising properties of optimal transport for the comparing of time series. Statistical and visual results on two real SITS datasets with two different settings demonstrate that TAOT can effectively alleviate the issues of DTW and further improve the clustering accuracy. Thus, TAOT can serve as a usable tool to explore the potential of precious SITS data.


Sign in / Sign up

Export Citation Format

Share Document