scholarly journals Enhancing Carbon Sequestration Using Organic Amendments and Agricultural Practices

Author(s):  
Zia Ur Rahman Farooqi ◽  
Muhammad Sabir ◽  
Nukshab Zeeshan ◽  
Khurram Naveed ◽  
Muhammad Mahroz Hussain
2018 ◽  
Author(s):  
Talal Darwish ◽  
Therese Atallah ◽  
Ali Fadel

Abstract. North East North Africa (NENA) region spans over 14 % of the total surface of the Earth and hosts 10 % of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and food security will depend much on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the situation of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries (17 out of 20), suffer from low productive lands (> 80 %). Stocks of SOC were mapped (1 : 5 Million) in topsoils (0–30 cm) and subsoils (30–100 cm). The maps showed that 69 % of soil resources present a stock of SOC below the threshold of 30 t ha−1. The stocks varied between ≈ 10 t ha−1 in shrublands and 60 t ha−1 for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of SIC were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 t ha−1, against 20 to 45 t ha−1 for SOC. This paper also highlights the modest contribution of NENA region to global SOC stock in the topsoil not exceeding 4.1 %. The paper also discusses agricultural practices that are favorable to carbon sequestration. Practices of conservation agriculture could be effective, as the presence of soil cover reduces the evaporation, water and wind erosions. Further, the introduction of legumes, as part of a cereal-legume rotation, and the application of nitrogen fertilizers to the cereal, caused a notable increase of SOC after 10 years. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist especially in aspects related to the effect of irrigation on SOC, and on SIC at the level of soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy relevant and socio-economic in nature, rather than scientific.


Author(s):  
Valeria Ventorino ◽  
Anna De Marco ◽  
Olimpia Pepe ◽  
Amalia Virzo De Santo ◽  
Giancarlo Moschetti

SOIL ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Talal Darwish ◽  
Thérèse Atallah ◽  
Ali Fadel

Abstract. The Near East North Africa (NENA) region spans over 14 % of the total surface of the Earth and hosts 10 % of its population. Soils of the NENA region are mostly highly vulnerable to degradation, and future food security will much depend on sustainable agricultural measures. Weather variability, drought and depleting vegetation are dominant causes of the decline in soil organic carbon (SOC). In this work the status of SOC was studied, using a land capability model and soil mapping. The land capability model showed that most NENA countries and territories (17 out of 20) suffer from low productive lands (> 80 %). Stocks of SOC were mapped (1:5 000 000) in topsoils (0–0.30 m) and subsoils (0.30–1 m). The maps showed that 69 % of soil resources are shown to have a stock of SOC below the threshold of 30 tons ha−1. The stocks varied between ≈10 tons ha−1 in shrublands and 60 tons ha−1 for evergreen forests. Highest stocks were found in forests, irrigated crops, mixed orchards and saline flooded vegetation. The stocks of soil inorganic carbon (SIC) were higher than those of SOC. In subsoils, the SIC ranged between 25 and 450 tons ha−1, against 20 to 45 tons ha−1 for SOC. Results highlight the contribution of the NENA region to global SOC stock in the topsoil (4.1 %). The paper also discusses agricultural practices that are favorable to carbon sequestration such as organic amendment, no till or minimum tillage, crop rotation and mulching and the constraints caused by geomorphological and climatic conditions. The effects of crop rotations on SOC are related to the amounts of above and belowground biomass produced and retained in the system. Some knowledge gaps exist, especially in aspects related to the impact of climate change and effect of irrigation on SOC, and on SIC at the level of the soil profile and soil landscape. Still, major constraints facing soil carbon sequestration are policy-relevant and socioeconomic in nature, rather than scientific.


2013 ◽  
Vol 17 (24) ◽  
pp. 2998-3005 ◽  
Author(s):  
Riccardo Scotti ◽  
Pellegrino Conte ◽  
Anne Berns ◽  
Giuseppe Alonzo ◽  
Maria Rao

2020 ◽  
Vol 51 (21) ◽  
pp. 2683-2700
Author(s):  
Md. Lutfar Rahman ◽  
Md. Mizanur Rahman ◽  
G. K. M. Mustafizur Rahman ◽  
A. R. M. Solaiman ◽  
Md. Abdul Karim ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 301-322 ◽  
Author(s):  
Jonathan Verschuuren

AbstractThis article assesses current and proposed European Union (EU) climate and environmental law, and the legal instruments associated with the Common Agricultural Policy (CAP), to see whether soil carbon sequestration is sufficiently promoted as a promising example of ‘climate-smart agriculture’. The assessment shows that current and proposed policies and instruments are inadequate to stimulate large-scale adoption of soil carbon projects across Europe. Given the identified structural flaws, it is likely that this is true for all climate-smart agricultural practices. An alternative approach needs to be developed. Under EU climate policy, agriculture should be included in the EU Emissions Trading System (ETS) by allowing regulated industries to buy offsets from the agricultural sector, following the examples set by Australia and others. The second element of a new approach is aimed at the CAP, which needs to be far more focused on the specific requirements of climate change mitigation and adaptation. Yet, such stronger focus does not take away the need to explore new income streams for farmers from offsets under the ETS, as the CAP will never have sufficient funds for the deep and full transition of Europe’s agriculture sector that is needed.


Soil Research ◽  
2016 ◽  
Vol 54 (2) ◽  
pp. 173 ◽  
Author(s):  
Ramez Saeid Mohamad ◽  
Vincenzo Verrastro ◽  
Lina Al Bitar ◽  
Rocco Roma ◽  
Michele Moretti ◽  
...  

Agricultural practices, particularly land use, inputs and soil management, have a significant impact on the carbon cycle. Good management of agricultural practices may reduce carbon emissions and increase soil carbon sequestration. In this context, organic agricultural practices may have a positive role in mitigating environmental burden. Organic olive cultivation is increasing globally, particularly in Italy, which is ranked first worldwide for both organic olive production and cultivated area. The aim of the present study was to assess the effects of agricultural practices in organic and conventional olive systems on global warming potential (GWP) from a life cycle perspective and to identify the hot spots in each system. The impacts assessed were associated with the efficiency of both systems at sequestering soil in order to calculate the net carbon flux. There was a higher environmental impact on GWP in the organic system because of higher global greenhouse gas (GHG) emissions resulting from manure fertilisation rather than the synthetic foliar fertilisers used in the conventional system. However, manure was the main reason behind the higher soil organic carbon (SOC) content and soil carbon sequestration in the organic system. Fertilisation activity was the main contributor to carbon emissions, accounting for approximately 80% of total emissions in the organic system and 45% in the conventional system. Conversely, given the similarity of other factors (land use, residues management, soil cover) that may affect soil carbon content, manure was the primary contributor to increased SOC in the organic system, resulting in a higher efficiency of carbon sequestration in the soil following the addition of soil organic matter. The contribution of the manure to increased SOC compensated for the higher carbon emission from the organic system, resulting in higher negative net carbon flux in the organic versus the conventional system (–1.7 vs –0.52 t C ha–1 year–1, respectively) and higher efficiency of CO2 mitigation in the organic system.


Politica ◽  
2011 ◽  
Vol 43 (4) ◽  
pp. 459-477
Author(s):  
Karin Hilmer Pedersen

Kan og vil landbruget bidrage til reduktion af drivhusgasser? Undersøgelser tyder på, at der i landbrugssektoren findes et stort og uudnyttet potentiale for relativt billig reduktion af drivhusgasser. Selvom måling af reduktion i udledning af drivhusgasser inden for landbrugssektoren er behæftet med omfattende usikkerhed, vil man ved at måle reduktion indirekte gennem relative ændringer i produktionsprocesser kunne inkludere landbrugssektoren i reguleringsordninger. Spørgsmålet er, hvordan man kan få landbruget til at bidrage. Yi overvejer brugen af standarder, grønne afgifter og omsættelige kvoter. Vi finder, at landbrugssektoren vil have en ikke ubetydelig interesse i at få tildelt kvoter og deltage i det europæiske kvotesystem, EU ETS. Landbrugets deltagelse er imidlertid ikke uproblematisk, men kræver styring og kontrolforanstaltninger, hvis kvoteordningerne ikke i stedet skal blive til Varm luft’. Rewarding farmers for carbon sequestration will enhance the carbon storage potential of the agricultural sector. Implementing sustainable farming systems that sequester net carbon does not require advanced technology. However, economic incentives are needed to enable farmers to implement more sustainable agricultural practices (IFAP, 2009).


Sign in / Sign up

Export Citation Format

Share Document