scholarly journals Characteristics of Atrial Premature Beat ECG Signals on Variant Maps

Author(s):  
Lihua Leng ◽  
Jeffery Zheng ◽  
Jing Zhang

2014 ◽  
Vol 14 (04) ◽  
pp. 1450055 ◽  
Author(s):  
IBTICEME SEDJELMACI ◽  
F. BEREKSI-REGUIG

In this paper, the analysis of the electrocardiogram (ECG) signal is carried out according a non-linear approach. This concerns the eventual fractal behavior of such signal and the correlation of such behavior with normal and pathological ECG signals. The analysis is carried out on different ECG signals taken from the MIT-BIH arrhythmia database. In fact these signals are those of six subjects with different ages and presenting both normal and abnormal arrhythmias situations. The abnormal situations are atrial premature beat (APB), premature ventricular contraction (PVC), right bundle branch block (RBBB) and left bundle branch block (LBBB). The fractal behavior of these signals is analyzed according to the determination of the multifractal spectrum and the fractal dimension variations and looking for eventually a fractal signature of each heart disease and age of the subject. The obtained results show a fractal signature according to the age and the pathologies for the studied cases. However further investigations are required on larger databases to confirm such results.



Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 951 ◽  
Author(s):  
Roberta Avanzato ◽  
Francesco Beritelli

Cardiovascular disease (CVD) is the most common class of chronic and life-threatening diseases and, therefore, considered to be one of the main causes of mortality. The proposed new neural architecture based on the recent popularity of convolutional neural networks (CNN) was a solution for the development of automatic heart disease diagnosis systems using electrocardiogram (ECG) signals. More specifically, ECG signals were passed directly to a properly trained CNN network. The database consisted of more than 4000 ECG signal instances extracted from outpatient ECG examinations obtained from 47 subjects: 25 males and 22 females. The confusion matrix derived from the testing dataset indicated 99% accuracy for the “normal” class. For the “atrial premature beat” class, ECG segments were correctly classified 100% of the time. Finally, for the “premature ventricular contraction” class, ECG segments were correctly classified 96% of the time. In total, there was an average classification accuracy of 98.33%. The sensitivity (SNS) and the specificity (SPC) were, respectively, 98.33% and 98.35%. The new approach based on deep learning and, in particular, on a CNN network guaranteed excellent performance in automatic recognition and, therefore, prevention of cardiovascular diseases.



Author(s):  
Jia Hua-Ping ◽  
Zhao Jun-Long ◽  
Liu Jun

Cardiovascular disease is one of the major diseases that threaten the human health. But the existing electrocardiograph (ECG) monitoring system has many limitations in practical application. In order to monitor ECG in real time, a portable ECG monitoring system based on the Android platform is developed to meet the needs of the public. The system uses BMD101 ECG chip to collect and process ECG signals in the Android system, where data storage and waveform display of ECG data can be realized. The Bluetooth HC-07 module is used for ECG data transmission. The abnormal ECG can be judged by P wave, QRS bandwidth, and RR interval. If abnormal ECG is found, an early warning mechanism will be activated to locate the user’s location in real time and send preset short messages, so that the user can get timely treatment, avoiding dangerous occurrence. The monitoring system is convenient and portable, which brings great convenie to the life of ordinary cardiovascular users.



2017 ◽  
Vol 5 (8) ◽  
pp. 147-150
Author(s):  
Chhavi Saxena ◽  
Hemant Kumar Gupta ◽  
P.D. Murarka


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.





Author(s):  
Guoquan Li ◽  
S M Wali Ullah ◽  
Bilu Li ◽  
Jinzhao Lin ◽  
Huiqian Wang
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document