scholarly journals Periodic Solution of Nonlinear Conservative Systems

Author(s):  
Akuro Big-Alabo ◽  
Chinwuba Victor Ossia
2003 ◽  
Vol 13 (06) ◽  
pp. 1353-1381 ◽  
Author(s):  
E. J. Doedel ◽  
R. C. Paffenroth ◽  
H. B. Keller ◽  
D. J. Dichmann ◽  
J. Galán-Vioque ◽  
...  

We show how to compute families of periodic solutions of conservative systems with two-point boundary value problem continuation software. The computations include detection of bifurcations and corresponding branch switching. A simple example is used to illustrate the main idea. Thereafter we compute families of periodic solutions of the circular restricted 3-body problem. We also continue the figure-8 orbit recently discovered by Chenciner and Montgomery, and numerically computed by Simó, as the mass of one of the bodies is allowed to vary. In particular, we show how the invariances (phase-shift, scaling law, and x, y, z translations and rotations) can be dealt with. Our numerical results show, among other things, that there exists a continuous path of periodic solutions from the figure-8 orbit to a periodic solution of the restricted 3-body problem.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


Sign in / Sign up

Export Citation Format

Share Document