scholarly journals Synthesis Methods in Solid-State Chemistry

Author(s):  
Youssef Ben Smida ◽  
Riadh Marzouki ◽  
Savaş Kaya ◽  
Sultan Erkan ◽  
Mohamed Faouzi Zid ◽  
...  
1968 ◽  
Vol 58 (5_6) ◽  
pp. 331-332
Author(s):  
K. Hauffe

2021 ◽  
Vol 2 (1) ◽  
pp. 39-48
Author(s):  
Nguyen H. H. Phuc ◽  
Takaki Maeda ◽  
Tokoharu Yamamoto ◽  
Hiroyuki Muto ◽  
Atsunori Matsuda

A solid solution of a 100Li3PS4·xLi3PO4 solid electrolyte was easily prepared by liquid-phase synthesis. Instead of the conventional solid-state synthesis methods, ethyl propionate was used as the reaction medium. The initial stage of the reaction among Li2S, P2S5 and Li3PO4 was proved by ultraviolet-visible spectroscopy. The powder X-ray diffraction (XRD) results showed that the solid solution was formed up to x = 6. At x = 20, XRD peaks of Li3PO4 were detected in the prepared sample after heat treatment at 170 °C. However, the samples obtained at room temperature showed no evidence of Li3PO4 remaining for x = 20. Solid phosphorus-31 magic angle spinning nuclear magnetic resonance spectroscopy results proved the formation of a POS33− unit in the sample with x = 6. Improvements of ionic conductivity at room temperature and activation energy were obtained with the formation of the solid solution. The sample with x = 6 exhibited a better stability against Li metal than that with x = 0. The all-solid-state half-cell employing the sample with x = 6 at the positive electrode exhibited a better charge–discharge capacity than that employing the sample with x = 0.


1999 ◽  
Vol 23 (11) ◽  
pp. 670-671
Author(s):  
Larisa A. Kovbasyuk ◽  
Olga Yu. Vassilyeva ◽  
Vladimir N. Kokozay ◽  
Wolfgang Linert ◽  
Paul R. Raithby

The mixed-metal mixed-halide complex [CuPbBrlL2]2 has been prepared by the direct interaction of zerovalent copper with lead halides and 2-dimethylaminoethanol (HL) in dmso and has been characterized by X-ray crystallography; the structure shows a layer arrangement of the tetranuclear metal units through the μ3-halogen bridging.


1989 ◽  
Vol 14 (2) ◽  
pp. 100-104 ◽  
Author(s):  
Linda A. Jacobs ◽  
Cornelius P. J. van Vuuren

2000 ◽  
Vol 658 ◽  
Author(s):  
Boris Wedel ◽  
Katsumasa Sugiyama ◽  
Kimio Itagaki ◽  
Hanskarl Müller-Buschbaum

ABSTRACTDuring the past decades the solid state chemistry of tellurium oxides has been enriched by a series of quaternary metallates. Interest attaches not only to the chemical and physical properties of these compounds, but also to their structure, which have been studied by modern methods. The partial similarity of earth alkaline metals and lead in solid state chemistry and their relationships in oxides opens a wide field of investigations. Eight new compounds in the systems Ba-M-Te-O (M= Nb, Ta) and Pb-M-Te-O (M = Mn, Ni, Cu, Zn) were prepared and structurally characterized: Ba2Nb2TeO10, Ba2M6Te2O21 (M = Nb, Ta) and the lead compounds PbMnTeO3, Pb3Ni4.5Te2.5O15, PbCu3TeO7, PbZn4SiTeO10 and the mixed compound PbMn2Ni6Te3O18. The structures of all compounds are based on frameworks of edge and corner sharing oxygen octahedra of the transition metal and the tellurium. Various different channel structures were observed and distinguished. The compounds were prepared by heating from mixtures of the oxides, and the single crystals were grown by flux method or solid state reactions on air. The synthesis conditions were modified to obtained microcrystalline material for purification and structural characterizations, which were carried out using a variety of tools including powder diffraction data and refinements of X-ray data. Relationships between lead transition metal tellurium oxides and the earth alkaline transition metals tellurium oxides are compared.


2016 ◽  
Vol 242 ◽  
pp. 1-2 ◽  
Author(s):  
Susan E. Latturner ◽  
Michael Shatruk

Sign in / Sign up

Export Citation Format

Share Document