scholarly journals A Robust and Oblivious Watermarking Method Using Maximum Wavelet Coefficient Modulation and Genetic Algorithm

Author(s):  
Surya Prasada Rao Borra ◽  
Kongara Ramanjaneyulu ◽  
K. Raja Rajeswari

An image watermarking method using Discrete Wavelet Transform (DWT) and Genetic Algorithm (GA) is presented for applications like content authentication and copyright protection. This method is robust to various image attacks. For watermark detection/extraction, the cover image is not essential. Gray scale images of size 512 × 512 as cover image and binary images of size 64 × 64 as watermark are used in the simulation of the proposed method. Watermark embedding is done in the DWT domain. 3rd and 2nd level detail sub-band coefficients are selected for further processing. Selected coefficients are arranged in different blocks. The size of the block and the number blocks depends on the size of the watermark. One watermark bit is embedded in each block. Then, inverse DWT operation is performed to get the required watermarked image. This watermarked image is used for transmission and distribution purposes. In case of any dispute over the ownership, the hidden watermark is decoded to solve the problem. Threshold-based method is used for watermark extraction. Control parameters are identified and optimized based on GA for targeted performance in terms of PSNR and NCC. Performance comparison is done with the existing works and substantial improvement is witnessed.

Like the other multimedia that is spread on the Internet, images are also vulnerable to theft and attacks. Protecting the image is therefore an urgent necessity because it represents a large proportion of the digital content. Authentication and ownership protection are the basic demands of image security and these are achieved by applying watermarking techniques. For the Muslim world, the Holy Quran has its sanctity, which does not accept any controversy or doubt. As part of keeping pace with modern technology, digital copies of the Holy Qur’an are available, which are widely distributed all over the world. Therefore, it is necessary to ensure that these copies maintain their integrity and ensure that there are no malicious manipulations. In this paper, we propose an image watermarking scheme to authenticate the images of digital version of Holy Quran using discrete wavelet transform DWT. Here a fragile watermark is used to clarify whether there is any modification occurred to the intended images. Initially the cover image is decomposed by DWT where 2nd and 4th level coefficients are exploited for watermark embedding. The intended watermark is obtained by scrambling the original cover image. Then the scrambled image is inserted into the DWT coefficients by several trials using different embedding gains. To evaluate our system and see how effective it is to detect any error or manipulation, PSNR, SSIM and MSE are employed beside that they are acting as an imperceptibility measure. Results proved that our method has achieved a good level of imperceptibility and can detect any slight tamper. It is necessary to bear in mind that this method is valid for application to normal color images as well and gives an excellent level of efficiency


Cryptography ◽  
2020 ◽  
pp. 480-497
Author(s):  
Lin Gao ◽  
Tiegang Gao ◽  
Jie Zhao

This paper proposed a reversible medical image watermarking scheme using Redundant Discrete Wavelet Transform (RDWT) and sub-sample. To meet the highly demand of the perceptional quality, the proposed scheme embedding the watermark by modifying the RDWT coefficients. The sub-sample scheme is introduced to the proposed scheme for the enhancement of the embedding capacity. Moreover, to meet the need of security, a PWLCM based image encryption algorithm is introduced for encrypting the image after the watermark embedding. The experimental results suggests that the proposed scheme not only meet the highly demand of the perceptional quality, but also have better embedding capacity than former DWT based scheme. Also the encryption scheme could protect the image contents efficiently.


2021 ◽  
Author(s):  
Praveen Kumar Mannepalli ◽  
Vineet Richhariya ◽  
Susheel Kumar Gupta ◽  
Piyush Kumar Shukla ◽  
Pushan Kumar Dutta

Abstract Image protection is essential part of the scientific community today. The invisible watermark is widely being used in past to secure the medical imaging data from copyright protection. In this paper novel hybrid combination of the invisible image watermarking and the Blockchain based encryption is proposed to design. The watermarking is implemented using edge detection (ED) of discrete wavelet transform (DWT) coefficient. The medical image is decomposed using L level DWT transform to generate multi-resolution coefficients. The edge detection is applied to HH wavelet band to generate the edge coefficients. To improve robustness difference of dilation and edge coefficient are used for watermark embedding. The watermark image is encrypted using Blockchain based hash algorithm for medical images. Then at the decoding end first decryption is achieved and then image is reconstructed. The results are sequentially presented for both stages. The PSNR performance is compared with additional level of security.


Author(s):  
Om Narayan Mishra ◽  
Shailja Shukla

Watermarking is a method to hide the image efficiently into any covering object (image in our case) so no intruder can interpret it by any means. Proposed work is a new design of image watermarking which include pre-processing of cover image with Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD). Proposed work using an alphanumeric key which initially modifies the watermark using simple ‘XOR’ operation, and at the receiver end this key must be there so that receiver can extract the watermark.  Proposed work is also using torus Automorphism which initially changes the watermark into a scramble format which cannot be recognised as original watermark.


2020 ◽  
Vol 6 (3) ◽  
pp. 8-13
Author(s):  
Farha Khan ◽  
M. Sarwar Raeen

Digital watermarking was introduced as a result of rapid advancement of networked multimedia systems. It had been developed to enforce copyright technologies for cover of copyright possession. Due to increase in growth of internet users of networks are increasing rapidly. It has been concluded that to minimize distortions and to increase capacity, techniques in frequency domain must be combined with another technique which has high capacity and strong robustness against different types of attacks. In this paper, a robust multiple watermarking which combine Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT)and Convolution Neural Network techniques on selected middle band of the video frames is used. This methodology is considered to be robust blind watermarking because it successfully fulfills the requirement of imperceptibility and provides high robustness against a number of image-processing attacks such as Mean filtering, Median filtering, Gaussian noise, salt and pepper noise, poison noise and rotation attack. The proposed method embeds watermark by decomposing the host image. Convolution neural network calculates the weight factor for each wavelet coefficient. The watermark bits are added to the selected coefficients without any perceptual degradation for host image. The simulation is performed on MATLAB platform. The result analysis is evaluated on PSNR and MSE which is used to define robustness of the watermark that means that the watermark will not be destroyed after intentional or involuntary attacks and can still be used for certification. The analysis of the results was made with different types of attacks concluded that the proposed technique is approximately 14% efficient as compared to existing work.


2015 ◽  
Vol 7 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Lin Gao ◽  
Tiegang Gao ◽  
Jie Zhao

This paper proposed a reversible medical image watermarking scheme using Redundant Discrete Wavelet Transform (RDWT) and sub-sample. To meet the highly demand of the perceptional quality, the proposed scheme embedding the watermark by modifying the RDWT coefficients. The sub-sample scheme is introduced to the proposed scheme for the enhancement of the embedding capacity. Moreover, to meet the need of security, a PWLCM based image encryption algorithm is introduced for encrypting the image after the watermark embedding. The experimental results suggests that the proposed scheme not only meet the highly demand of the perceptional quality, but also have better embedding capacity than former DWT based scheme. Also the encryption scheme could protect the image contents efficiently.


2018 ◽  
Vol 27 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Akankasha Sharma ◽  
Amit Kumar Singh ◽  
Pardeep Kumar

Abstract In this paper, we present an introduction of digital image watermarking followed by important characteristics and potential applications of digital watermarks. Further, recent state-of-the-art watermarking techniques as reported by noted authors are discussed in brief. It includes the performance comparison of reported transform/spatial domain based watermarking techniques presented in tabular form. This comprehensive survey will be significant for researchers who will be able to implement more efficient watermarking techniques. Moreover, we present a robust watermarking technique using fusion of discrete wavelet transform (DWT) and Karhunen-Loeve transform for digital images. Further, visual quality of the watermarked image is enhanced by using different image de-noising techniques. The results are obtained by varying the gain factor, size of the image watermark, different DWT sub-bands, and image processing attacks. Experimental results demonstrate that the method is imperceptible and robust for different image processing attacks.


Digital image watermarking is powerful technique which provide ownership protection and copyright protection. In this paper, a novel watermarking technique based on Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) is presented. YCbCr color model is used for watermark embedding and extraction because of its close resemblance to human visual system. Single level DWT is applied to Luma Component of YCbCr color cover image and then DCT coefficients are taken for watermark embedding process. DCT is applied block by block of size . Binary watermark is scrambled using Arnold transform with k iterations to achieve robustness. Proposed method has been evaluated by many performance evaluation measures such as Peak Signal to Noise Ratio (PSNR), Normalized Correlation (NC) and Computational time. Various watermark attacks are also applied against proposed method, result shows that superiority over other methods.


Author(s):  
CONG JIN

Digital watermark technology has been proposed as an effective method to protect the copyright of multimedia data. An adaptive image watermark scheme based on fuzzy inference system that in discrete wavelet transform domain is proposed. By exploiting the brightness and texture characteristics of human visual system and considering properties of the original image wavelet coefficient, a fuzzy inference system is designed whose inputs are parameters of brightness and texture of the original image and output is the strength of embedded watermarks. It ensures that the watermark embedding strength is determined adaptively. The experimental results show that the watermarks embed by the proposed scheme are robust against attacks commonly used image processing methods such as JPEG compression, Gaussian noise, cropping, mean filtering, median filtering, rotation, and rescaling etc. Proposed scheme are shown to provide very good results in term of image imperceptibility, too.


Sign in / Sign up

Export Citation Format

Share Document