scholarly journals Integrated Analysis Method for Stability Analysis and Maintenance of Cut-Slope in Urban

2021 ◽  
Author(s):  
Mincheol Park ◽  
Heuisoo Han ◽  
Yoonhwa Jin

In the process of constructing roads for the development of the city, cut-slopes are made by excavating mountains. However, these cut-slopes are degraded in strength by time-deterioration phenomenon, and progressive slope failure is caused. This study developed an integrated analysis method for stability analysis and maintenance of cut-slopes in urban. The slope stability analysis was performed using the finite element model, and the progressive slope failure by time-dependent deterioration was quantified by using the strength parameters of soil applying the strength reduction factor (SRF). The displacements until the slope failure by slope stability analysis were quantified by cumulative displacement curve, velocity curve, and inverse velocity curve and, applied to the slope maintenance method. The inverse-velocity curve applied to the prediction of the time of slope failure was regressed to the 1st linear equation in the brittle material and the 3rd polynomial equation in the ductile material. This is consistent with the proposed formula of Fukuzono and also shows similar behavior to the failure case in literature. In the future, integrated analysis method should be improved through additional research. And it should be applied to cut-slope to prevent disasters.

Landslides ◽  
2001 ◽  
Vol 38 (2) ◽  
pp. 129-135
Author(s):  
Jie XIONG ◽  
Akitoshi MOCHIZUKI ◽  
Hirofumi YUMIOKA ◽  
Tatsuo MIKI

Heliyon ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. e03907 ◽  
Author(s):  
Mohammad Azarafza ◽  
Haluk Akgün ◽  
Mohammad-Reza Feizi-Derakhshi ◽  
Mehdi Azarafza ◽  
Jafar Rahnamarad ◽  
...  

2014 ◽  
Vol 540 ◽  
pp. 177-180 ◽  
Author(s):  
Dong Fang Tian

Based on the FEM analysis of unsaturated slope seepage and strength of unsaturated soil, and adopted the assumption of rigid body limit equilibrium to calculate safe coefficient of landslides, a new slope stability analysis method is promoted and the calculation program called USSP is composed and verified. The method could consider the impact of rainfall and water change to slope stability. Compared with GeoSlope package, it is more practical in rainfall or variation of ground water level condition.


2012 ◽  
Vol 22 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Tae-Chin Cho ◽  
Taik-Jean Hwang ◽  
Guen-Ho Lee ◽  
Kye-Seong Cho ◽  
Sang-Bae Lee

2021 ◽  
Vol 83 (5) ◽  
pp. 9-17
Author(s):  
Supandi Sujatono

The content of level has a big enough role in the value of the physical characteristic and the mechanical of material. The behavior of water in these materials needs to be analyzed first in order to support the slope stability analysis. Modeling of water behavior in materials in the construction of Tailing Storage Facilities (TSF) will be integrated in the slope stability analysis. This study aims to provide an explanation about the analysis of the Fishing Storage Facilities (TSF) which integrates transient groundwater analysis using the finite element method in supporting the stability analysis of the embankment of Tailing Storage Facilities (TSF). The variables that are used in the analysis, they are the parameters of physical properties and mechanic material for embankment and permeability parameters in analyzing groundwater. The analysis method for geotechnical and geohydrology modeling uses the finite element method. The results of analysis showed that groundwater behavior in the embankment material can be known in detail so that it can be integrated with stability analysis.   It can be seen that there is a decrease in the value of the slope safety factor using the Integrated Slope Stability Analysis method compared to the conventional method. Adding an impermeable layer using a thickness of 5 m of clay material and a thickness of 20-30 m to support the retaining wall/foot is the criterion of optimal stability. The required lining material thickness (D) can be expressed by the following drawdown percentage equation function:  reduction percentage = (1-0.8661D (-0.031)) * 100%.  


Sign in / Sign up

Export Citation Format

Share Document