key block
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 2)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhenpeng Jiang ◽  
Fangtian Wang ◽  
Kaijun Miao ◽  
Qinghua Cao

When a working face is crossing the abandoned roadways, problems such as roof subsidence, rock fracture, and instability will occur, resulting in widespread roof fall and rib spalling, which seriously affect safe and efficient mining on the working face. In this paper, the no. 23 coal pillar working face of Juji coal mine is taken as the engineering background, a mechanical model of crossing the abandoned roadways is constructed aimed at the problem of the working face crossing the abandoned roadway group, the collapse of the abandoned roadway roof is analyzed, a scheme of crossing the abandoned roadways is designed, and the development law of the stress and plastic zone after the reinforcement scheme is stimulated and analyzed. The results show that when the working face advances to the abandoned roadway, key block B crosses the abandoned roadway and the solid coal to form a “cross-roadway long key block.” It is calculated that the minimum support resistance required for the abandoned roadway is 6700 kN. Based on the results of numerical comparison, it is concluded that filling wood pile when the working face passes through the roof abandoned roadway and adding anchor cables for reinforcement support when the working face crosses the coal seam abandoned roadway effectively reduce the stress concentration of surrounding rocks, decrease the development of the plastic zone, and achieve safe and efficient mining when the working face crosses the abandoned roadways.


Author(s):  
Ivan Matúš ◽  
Pavel Ružbarský ◽  
Bibiana Vadašová

The study aims to determine the contribution of kinematic parameters to time to 5 m without underwater undulating and kicking. Eighteen male competitive swimmers started from three weighted positions and set the kick plate to positions 1–5. We used SwimPro cameras and the Dartfish© software. In the on-block phase, we found significant correlations (p < 0.01) between the front ankle angle and block time. The correlations between start phases were statistically significant (p < 0.01) between block time and rear ankle angle, respectively, to time to 2 m; rear knee angle and glide time; block time and time to 5 m; time to 2 m and time to 5 m; and flight distance and glide distance. The multiple regression analysis showed that the on-block phase and flight phase parameters, respectively, contributed 64% and 65% to the time to 5 m. The key block phase parameters included block time and rear knee angle. The key flight phase parameters determining time to 5 m included take-off angle and time to 2 m. The key parameters determining the performance to 5 m during the above-water phase include rear knee angle, block time, takeoff angle, and time to 2 m.


2021 ◽  
Vol 14 (3) ◽  
pp. 1-25
Author(s):  
Arif Sasongko ◽  
I. M. Narendra Kumara ◽  
Arief Wicaksana ◽  
Frédéric Rousseau ◽  
Olivier Muller

The confidentiality and integrity of a stream has become one of the biggest issues in telecommunication. The best available algorithm handling the confidentiality of a data stream is the symmetric key block cipher combined with a chaining mode of operation such as cipher block chaining (CBC) or counter mode (CTR). This scheme is difficult to accelerate using hardware when multiple streams coexist. This is caused by the computation time requirement and mainly by management of the streams. In most accelerators, computation is treated at the block-level rather than as a stream, making the management of multiple streams complex. This article presents a solution combining CBC and CTR modes of operation with a hardware context switching. The hardware context switching allows the accelerator to treat the data as a stream. Each stream can have different parameters: key, initialization value, state of counter. Stream switching was managed by the hardware context switching mechanism. A high-level synthesis tool was used to generate the context switching circuit. The scheme was tested on three cryptographic algorithms: AES, DES, and BC3. The hardware context switching allowed the software to manage multiple streams easily, efficiently, and rapidly. The software was freed of the task of managing the stream state. Compared to the original algorithm, about 18%–38% additional logic elements were required to implement the CBC or CTR mode and the additional circuits to support context switching. Using this method, the performance overhead when treating multiple streams was low, and the performance was comparable to that of existing hardware accelerators not supporting multiple streams.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao Long Cheng ◽  
Lu Peng Liu ◽  
Jun Xiao ◽  
Qi Hua Zhang ◽  
Jian Xue ◽  
...  

In rock engineering, block theory is a fundamental theory that aims to analyze the finiteness, removability, and mechanical stability of convex blocks under different engineering conditions. In practice, the possible combinations of the fractures and joint sets that may generate key blocks can be identified by stereographic projection graphs of block theory. However, classic key block theory does not provide solutions for nonconvex blocks, which are very common in civil projects, such as those with underground edges, corners, and portals. To enhance the availability of block theory, a general algorithm that can analyze the removability and stability of blocks of arbitrary shapes is proposed in this paper. In the proposed algorithm, the joint pyramid for blocks of arbitrary shapes can be computed, and the faces of the blocks are grouped according to their normal vectors such that parallel or nonadjacent sliding faces with the same normal vector can be immediately identified when the sliding mode is determined. With this algorithm, blocks of arbitrary shapes can be analyzed, and users do not need to have experience interpreting graphs of block theory to take advantage of its accuracy and effectiveness. The proposed algorithm was verified by several benchmarking examples, and it was further applied to investigate the stability of the left bank rock slope of a dam. The results showed that the proposed algorithm is correct, effective, and feasible for use in the design and support of excavation in complex rock masses.


Author(s):  
Igor Zagorodniuk

The key block of tasks in defining species as a phenomenon, as a concept, and as a category — its emergent features, is considered. These include 5 systems of features, such as 1) diagnosis (primarily morphological, including unique apomorphies); 2) genotype in the broadest sense (including karyotype); 3) system of reproduction and protection of the gene pool from mixing with foreign forms (reproductive isolation); 4) geographical range (including type habitats and distribution limits); 5) system of variability (including the presence and features of age-related changes, sexual differences, and trends in geographical variation). There is evidence that species as a reality is characterized by the properties of "repeating structures". To the latter the author includes the following six: 1) limited volumes of species composition of communities; 2) limited body-size rows of guilds; 3) parallelisms and the phenomenon of isomorphism; 4) limited number of ecotypes and the phenomenon of vicariates; 5) homeomorphies and restrictions of morphological types; 6) synperates as overlaps of range boundaries. Areas of non-alternative application of the concept of "species", including red lists, checklists, descriptions of unique parts of communities (endemics, rarities, etc.), and objects of economic value are given.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Bing-Jun Sun ◽  
Xin-Zhu Hua ◽  
Yan Zhang ◽  
Jiadi Yin ◽  
Kai He ◽  
...  

The mechanical model of the basic roof fracture structure is established on the basis of key block theory to study the roof breaking mechanism of gob-side entry retaining under roof cutting and pressure relief, and the analytical formula of roof support resistance is derived when the key block of the basic roof is stable. The influence of roof cutting angle and cutting height on roof support resistance is also analyzed. Determining the cutting seam parameters of the retained roadway roof is necessary to identify the support resistance of the roadway roof due to the correlation between the roof cutting parameters and the support resistance. Taking the II 632 haulage drift of the Hengyuan coal mine as the engineering background, FLAC3D numerical simulation is used in this paper to analyze the influence of different roof cutting angles and cutting heights on the surrounding rock structure evolution of retained roadways. Results show that the roof cutting angle and cutting height respond to the support resistance of the retained roadway roof, and the support resistance required by the roof increases with the roof cutting angle and cutting height. This condition ensures that the side roof of the gob can be cut off smoothly, and the support resistance required by the roof of retained roadways is within a reasonable range. Through theoretical and numerical simulation analysis, the reasonable roof cutting height of II 632 haulage drift is 8 m and the roof cutting angle is 15°. The theoretical analysis and numerical simulation results reveal that the required support resistance to maintain the stability of the roadway roof is 0.38 MPa. The supporting scheme of the roof of the II 632 haulage drift in the Hengyuan coal mine is then designed. Finally, the field industrial test is used for verification. The borehole imaging results show that the overall line of the retained roadway roof is small based on the description of field monitoring results. The deformation of the surrounding rock surface of the retained roadway is less than 100 mm, and the roadway is 40 m from the lagging working face. The deformation rate of surrounding rock decreases with the increase in distance from the working face. The integrity of the retained roadway roof is good, and the deformation of the surrounding rock is effectively controlled.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liguo Zhang ◽  
Dong Wang ◽  
Guanghe Li ◽  
Jiaxing Dong ◽  
Junpeng Zhang

Cataclastic rock masses with multiple failure modes and mechanisms are critical geological problems in the construction of rock slopes. Cataclastic rock masses are widely distributed in slopes of a hydropower project located on Lancang River, which is located in Tibet, China. In this study, the potentially unstable block of the slope is divided into key block and secondary key block based on the key block theory, and the system reliability evaluation theory is introduced. The method for quantitatively analyzing the rock mass stability of cataclastic slopes with sliding failure is established. Then, the spatial distribution of cataclastic rock masses and discontinuities in several rock slopes of a hydropower project are determined using traditional geological surveying and 3D laser scanning. At last, combining the BATE 2.0 software and the stereographic projection of the vector, the proposed method is applied to the study area. The results show that the main failure mode of the studied slope is wedge failure, and the system reliability is 1.69. With the increase in the instability probability of the key block, the increase in the instability probability of the system block is obvious, which reflects the controlling effect of the key block on the stability of the system block. The calculated system instability probability is slightly larger than the key block instability probability.


2020 ◽  
Vol 10 (24) ◽  
pp. 9102
Author(s):  
Ho Choi ◽  
Kang-Seok Lee

The authors developed two types of block systems consisting only of main block and key block without joint mortar to improve the seismic performances and to enhance the workability. Two types of block systems have different key block shapes: one is the peanut shape, and the other is the dumbbell shape. The proposed block systems have a half-height difference between the main block and the key block to significantly improve seismic performance compared to typical masonry walls with joint mortar. In this study, in order to evaluate the in-plane seismic performance of the proposed block systems, two types of block walls are experimentally investigated, including the typical block wall. In the tests, three full-scale, single-story specimens are tested under in-plane cyclic loading, and failure patterns and cracks are carefully observed. In this paper, the in-plane loading bearing capacity, energy dissipate capacity and reuse ratios of block walls are discussed in detail. As a result, the deformability, energy absorption capacity and reuse ratio of the proposed block systems were considerably higher than those of a typical block system.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xinfeng Wang ◽  
Mingyuan Lu ◽  
Yuhao Gao ◽  
Wenbo Luo ◽  
Wengang Liu

The influence of mining on the upper section of working face leads to the fracture of the lateral key block of the roof. From the goaf to the coal body, a group of “left-middle-right” key blocks are formed. According to the three different spatial position structure relations formed by roadway and broken key block in practical engineering, the mechanical causes of broken structure of key block in roof of roadway along goaf are analyzed. FLAC3D is used to simulate and analyze the deformation characteristics and stress state of key block structure model before and after roadway excavation, and the mechanical characteristics and instability mechanism of key block sliding and breaking under three spatial structure modes are obtained. With the help of the mathematical model of material mechanics, the structural mechanical behavior of key block model of roof before and after roadway excavation and the temporal and spatial evolution law of unloading and breaking are studied. The results show that the complex influence factors of mining disturbance and low strength of the weak rock mass will weaken the internal balance of “masonry beam” structure. When the roadway is located below the fracture line of the key block, the middle key block will rotate and lose stability with the side hinge joint of the goaf as the axis; when the roadway is located in the fracture line of the key block, it is easy for the middle key block to slide and lose stability; when the roadway is located outside the fracture line of the key block, the middle key block is in the state of complete collapse, the mechanical transmission mechanism of the surrounding rock in the vertical direction is weakened, and the surrounding rock is the most stable.


Author(s):  
Ashwaq T. Hashim ◽  
Ahmed M. Hasan ◽  
Hayder M. Abbas

This paper attempts to build up a simple, strong and secure cryptographic algorithm. The result of such an attempt is “RC6-Cascade” which is 320-bits RC6 like block cipher. The key can be any length up to 256 bytes. It is a secret-key block cipher with precise characteristics of RC6 algorithm using another overall structure design. In RC6-Cascade, cascading of F-functions will be used instead of rounds. Moreover, the paper investigates a hardware design to efficiently implement the proposed RC6-Cascade block cipher core on field programmable gate array (FPGA). An efficient compact iterative architecture will be designed for the F-function of the above algorithm. The goal is to design a more secure algorithm and present a very fast encryption core for low cost and small size applications.


Sign in / Sign up

Export Citation Format

Share Document