scholarly journals Surgical Treatment of Wounds Using Stem Cells in Epidermolysis Bullosa (EB)

2021 ◽  
Author(s):  
Magdalena Nita ◽  
Jacek Pliszczyński ◽  
Andrzej Eljaszewicz ◽  
Marcin Moniuszko ◽  
Tomasz Ołdak ◽  
...  

Epidermolysis bullosa (EB) is a group of hereditary skin diseases, or genodermatoses, characterized by the formation of severe, chronic blisters with painful and life-threatening complications. Despite the previous and ongoing progress in the field, there are still no effective causative treatments for EB. The treatment is limited to relieving symptoms, which—depending on disease severity—may involve skin (blisters, poorly healing wounds caused by the slightest mechanical stimuli, contractures, scarring, pseudosyndactyly) and internal organ abnormalities (esophageal, pyloric, or duodenal atresia; renal failure; and hematopoietic abnormalities). The last decade saw a series of important discoveries that paved the way for new treatment methods, including gene therapy, bone marrow transplantation, cell therapy (allogenic fibroblasts, mesenchymal stem cells [MSCs], and clinical use of induced pluripotent stem cells. Tissue engineering experts are attempting to develop skin-like structures that can facilitate the process of healing to promote skin reconstruction in injuries that are currently incurable. However, this is incredibly challenging, due to the complex structure and the many functions of the skin. Below, we characterize EB and present its potential treatment methods. Despite the cure for EB being still out of reach, recent data from animal models and initial clinical trials in humans have raised patients’, clinicians’, and researchers’ expectations. Consequently, modifying the course of the disease and improving the quality of life have become possible. Moreover, the conclusions drawn based on EB treatment may considerably improve the treatment of other genetic diseases.

Author(s):  
Aida Nourbakhsh ◽  
Brett M. Colbert ◽  
Eric Nisenbaum ◽  
Aziz El-Amraoui ◽  
Derek M. Dykxhoorn ◽  
...  

AbstractProgressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhi-ping Zhang ◽  
Jun-tao Zhang ◽  
Shu-cheng Huang ◽  
Xiu-yuan He ◽  
Li-xin Deng

Abstract Embryonic stem cells (ESCs) derived from somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) are promising tools for meeting the personalized requirements of regenerative medicine. However, some obstacles need to be overcome before clinical trials can be undertaken. First, donor cells vary, and the reprogramming procedures are diverse, so standardization is a great obstacle regarding SCNT and iPSCs. Second, somatic cells derived from a patient may carry mitochondrial DNA mutations and exhibit telomere instability with aging or disease, and SCNT-ESCs and iPSCs retain the epigenetic memory or epigenetic modification errors. Third, reprogramming efficiency has remained low. Therefore, in addition to improving their success rate, other alternatives for producing ESCs should be explored. Producing androgenetic diploid embryos could be an outstanding strategy; androgenic diploid embryos are produced through double sperm cloning (DSC), in which two capacitated sperms (XY or XX, sorted by flow cytometer) are injected into a denucleated oocyte by intracytoplasmic sperm injection (ICSI) to reconstruct embryo and derive DSC-ESCs. This process could avoid some potential issues, such as mitochondrial interference, telomere shortening, and somatic epigenetic memory, all of which accompany somatic donor cells. Oocytes are naturally activated by sperm, which is unlike the artificial activation that occurs in SCNT. The procedure is simple and practical and can be easily standardized. In addition, DSC-ESCs can overcome ethical concerns and resolve immunological response matching with sperm providers. Certainly, some challenges must be faced regarding imprinted genes, epigenetics, X chromosome inactivation, and dosage compensation. In mice, DSC-ESCs have been produced and have shown excellent differentiation ability. Therefore, the many advantages of DSC make the study of this process worthwhile for regenerative medicine and animal breeding.


Sign in / Sign up

Export Citation Format

Share Document