scholarly journals Recent Climate Shocks in the Sahel: A Systematic Review

2021 ◽  
Author(s):  
Terence Epule Epule ◽  
Driss Dhiba ◽  
Abdelghani Chehbouni

In Africa, the Sahel is increasingly susceptible to climate shocks such as droughts, sandstorms (winds), and floods. Through a systematic review this work tracks the frequency with which these shocks are reported in the literature during the period 1975–2020. This work examines trends to identify which shocks are most reported, documenting their spatial distribution and evaluating the impacts of climatic and non-climatic drivers. In general, 388 shocks were reported in 164 relevant peer review papers. Southern Niger recorded 15.97% of all the shocks while Ethiopia and Senegal recorded 11.85% and 10.85% respectively. Also, West African Sahel saw about 49.97% of all shocks followed by East African Sahel with 29.89% and Central African Sahel with 12.11%. Generally, droughts (n = 219), appear to be the most frequently reported shocks followed by floods (n = 123) and winds (n = 46). The 1975–1985 decade recorded the most shocks (n = 207), followed by the 1997–2007 decade which saw (n = 80) shocks while between 1986 and 1996 a total of 52 shocks were recorded. 52% of the shocks are driven by climatic factors while 47% are driven by non-climatic drivers.

2021 ◽  
Vol 39 ◽  
pp. 103110
Author(s):  
L. Champion ◽  
N. Gestrich ◽  
K. MacDonald ◽  
L. Nieblas-Ramirez ◽  
D.Q. Fuller

Food Policy ◽  
2019 ◽  
Vol 83 ◽  
pp. 39-47
Author(s):  
Federica Alfani ◽  
Andrew Dabalen ◽  
Peter Fisker ◽  
Vasco Molini

2004 ◽  
Vol 85 (1) ◽  
pp. 61-77 ◽  
Author(s):  
S.M. Haefele ◽  
M.C.S. Wopereis ◽  
A.-M. Schloebohm ◽  
H. Wiechmann

Author(s):  
Guillaume Chagnaud ◽  
Geremy Panthou ◽  
Theo Vischel ◽  
Thierry Lebel

Abstract The West African Sahel has been facing for more than 30 years an increase in extreme rainfalls with strong socio-economic impacts. This situation challenges decision-makers to define adaptation strategies in a rapidly changing climate. The present study proposes (i) a quantitative characterization of the trends in extreme rainfalls at the regional scale, (ii) the translation of the trends into metrics that can be used by hydrological risk managers, (iii) elements for understanding the link between the climatology of extreme and mean rainfall. Based on a regional non-stationary statistical model applied to in-situ daily rainfall data over the period 1983-2015, we show that the region-wide increasing trend in extreme rainfalls is highly significant. The change in extreme value distribution reflects an increase in both the mean and variability, producing a 5%/decade increase in extreme rainfall intensity whatever the return period. The statistical framework provides operational elements for revising the design methods of hydraulic structures which most often assume a stationary climate. Finally, the study shows that the increase in extreme rainfall is more attributable to an increase in the intensity of storms (80%) than to their occurrence (20%), reflecting a major disruption from the decadal variability of the rainfall regime documented in the region since 1950.


Author(s):  
Federica Alfani ◽  
Andrew Dabalen ◽  
Peter Fisker ◽  
Vasco Molini

Sign in / Sign up

Export Citation Format

Share Document