scholarly journals Electrochemical Device with Interdigitated Ring Array Electrodes for Investigating the Relationship between Cardiomyocyte Differentiation from Embryonic Stem Cells and Alkaline Phosphatase Activity

2013 ◽  
Vol 81 (9) ◽  
pp. 682-687 ◽  
Author(s):  
Kosuke INO ◽  
Taku NISHIJO ◽  
Yusuke KANNO ◽  
Fumisato OZAWA ◽  
Toshiharu ARAI ◽  
...  
2014 ◽  
Vol 26 (1) ◽  
pp. 213
Author(s):  
M. Guastali ◽  
F. Bressan ◽  
R. Maziero ◽  
D. Paschoal ◽  
M. Sudano ◽  
...  

Research on induced pluripotent stem cells (iPS) emerged to overcome the limitations of embryonic stem cells, such as ethical issues, security, compatibility, and availability. The nuclear reprogramming induced by viral vectors aims to induce differentiated cells to an embryonic pluripotent state. The iPS cells can be generated using retroviral vector expressing Oct4, Sox2, Klf4 and c-Myc, but produces much genomic integration (GI) which limit its use for therapeutic purpose. Alternatively, lentiviral vectors have been used to be safe and equally effective in producing iPS. Despite several cell types can be reprogramed, there is no information of which is the best cell type to be used in the generation of iPS. The umbilical cord is a reserve of multipotent mesenchymal stem cells and may present a greater reprogramming efficiency compared with fibroblasts in the generation of iPS. Here we describe the use of a single lentiviral vector composed by the combination of four transcription factors (Oct4, Sox2, Klf4, and c-Myc) for the generation of iPS cells using equine umbilical cord (UC) cells. Therefore, samples were collected from 5 equine UC at birth. The umbilical matrices were subjected to enzymatic digestion in a solution of 0.004% collagenase diluted in PBS, and the cells obtained by filtration were plated in plastic culture bottles with 5 mL of DMEM supplemented with 20% fetal calf serum, antibiotics, and antimycotics, followed by incubation at 37°C in a 100% humid atmosphere at 5% CO2 in air. When the cells reached 40% of confluence and a concentration of 105 cells, these cells were transduced with 50 μL Human Stemcca cre-excisable constitutive polycistronic (oskm) lentivirus (EMD Millipore Corp., Billerica, MA, USA) produced according manufacturer's protocol plus 8 ng mL–1 polybrene (hexadimethrine bromide, Sigma, St. Louis, MO, USA). The culture medium was renewed 12 h after incubation. Five days after transduction, cells were transferred to murine embryonic fibroblasts (MEF) feeder layer and cultured for 14 days in a specific medium for iPS. The morphologically similar colonies to the embryonic stem cells were visualised after two weeks of infection. When the clones were well established two mechanical and two enzymatic passages were performed. Cells were re-expanded under new MEFs and submitted to alkaline phosphatase activity detection (Leukocyte Alkaline Phosphatase Kit, Sigma) according to manufacturer's recommendations. Briefly, cell cultures were fixed, incubated with a mixture of alkaline naphthol AS-BI with fast red violet LB. Red labelling insoluble deposits indicated the sites of alkaline phosphatase activity. In all cultures tested (n = 10) the expression of alkaline phosphatase was detected. The cell culture samples will still be tested for gene expression of pluripotency factors. The combination of all factors in a single transcript was efficient for reprogramming cells from the umbilical cord and allowed the derivation of mesenchymal cells in equine iPS. The use of a single lentiviral reprogramming vector represents a powerful tool for the study of iPS technology and its possible therapeutic application.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4320-4320
Author(s):  
Yukinori Nakamura ◽  
Toshiaki Yujiri ◽  
Ryouhei Nawata ◽  
Kozo Tagami ◽  
Yukio Tanizawa

Abstract BCR-ABL oncogene, the molecular hallmark of chronic myelogenous leukemia, arises in a primitive hematopoietic stem cell that has the capacity for both differentiation and self-renewal. Its product, Bcr-Abl protein, has been shown to activate STAT3 and to promote self-renewal in ES cells, even in the absence of leukemia inhibitory factor (LIF). MEK kinase 1 (MEKK1) is a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase involved in Bcr-Abl signal transduction (Oncogene22:7774, 2003). To investigate the role of MEKK1 in Bcr-Abl-induced transformation of ES cells, p210 Bcr-Abl was stably transfected into wild type (WT+p210) and MEKK1−/− (MEKK1−/−+p210) ES cells. Bcr-Abl enhanced both MEKK1 expression and activation in ES cells, as it does in other Bcr-Abl-transformed cells. In the absence of LIF, WT+p210 cells showed constitutive STAT3 activation and formed compact colonies having strong alkaline phosphatase activity, a characteristic phenotype of undifferentiated ES cells. MEKK1−/−+p210 cells, by contrast, showed less STAT3 activity than WT+p210 cells and formed large, flattened colonies having weak alkaline phosphatase activity, a phenotype of differentiated ES cells. These results indicate that MEKK1 plays an essential role in Bcr-Abl-induced STAT3 activation and in the capacity for LIF-independent self-renewal, and may thus be involved in Bcr-Abl-mediated leukemogenesis in stem cells.


2005 ◽  
Vol 17 (2) ◽  
pp. 235 ◽  
Author(s):  
G. Cetinkaya ◽  
S. Arat ◽  
H. Odaman Mercan ◽  
M.A. Onur ◽  
A. Tumer

Murine embryonic stem cells derived from the inner cell mass of mouse blastocysts can be maintained in culture for extended periods by using feeder layers and leukemia inhibitory factor (LIF). Maintenance of undifferentiated status occurs via LIF-mediated signalling pathways. In this study we cultured embryonic stem (ES) cells in Knockout-DMEM with serum replacement on a three-dimensional matrix, non-woven polyester fabric (NWPF), which is formed from non-arrayed polyethylene teraphthalate fibers. The surface of the fibers was modified by immobilizing LIF. While stimulating the matrix-bound form of LIF in vitro, we also tried to induce LIF-mediated signalling pathways continually. Our goal was to constitute a synthetic microenvironment that would support the undifferentiated growth of murine ES cells. Experimental groups were examined according to colony morphology, alkaline phosphatase activity, SSEA-1 antibody immunoreactivity, and SEM analyses. It was shown that three dimensional macroporous fibrous matrix, NWPF could support growth of undifferentiated ES cells. However, the ratio of undifferentiated colonies was higher on feeder layers than an polymeric surfaces (93% on mouse embryonic fibroblasts; 63,7% on hydrolized polymeric surface, P < 0,05). Results showed that LIF-immobilized surfaces supported undifferentiated growth of ES cells better than hydrolyzed surfaces. Colonies cultured on LIF-immobilized surfaces, had higher alkaline phosphatase activity and undifferentiated phenotype ratio than those on hydrolyzed surfaces. When the soluble or the matrix-bound form of LIF was used, the number of undifferentiated colonies increased in the polymeric groups (77.8% soluble LIF; 81.6% matrix bound LIF P < 0,05). On NWPF discs, ES cells formed big cell aggregates which had high alkaline phosphatase activity but low SSEA-1 immunoreactivity . When they were passaged to feeder layers, SSEA-1 activity increased. We managed to obtain undifferentiated colonies on NWPF discs by using LIF but the skeletal structure of polymeric matrix would be more convenient for differentiation studies. This study was performed in TUBITAK-RIGEB and supported by a part of grant from Hacettepe University (0102601001).


2009 ◽  
Vol 21 (1) ◽  
pp. 236
Author(s):  
E.-M. Jeung ◽  
K.-C. Choi ◽  
E.-B. Jeung

Endocrine disruptors (ED) may have adverse impacts on reproductive and immune systems in human and wild animals. It has been shown that octyl-phenol (OP) and nonyl-phenol (NP) have estrogenicity in estrogen-responding cells or tissues. In this study, we further investigated the effect(s) of OP and NP on the expression of undifferentiation and differentiation markers in mouse embryonic stem cells (ESC), which function as an important factor in the differentiation of ESC into cardiomyocytes. Mouse ESC were cultured in hanging drops to form embryoid bodies (EB). The medium was replaced with phenol red-free DMEM/F-12 supplemented with 5% charcoal-dextran-stripped FBS. The ESC were treated with OP, NP (1Ã-10-6 and 1Ã-10-7 M) or 17β-estradiol (E2; 1Ã-10-8 and 1Ã-10-9 M) in a time-dependent manner (1, 2 and 3 days), and EB were treated with identical concentrations for 4 and 8 days, respectively. High increasing doses of OP and NP were employed in this study because a binding affinity of ED to estrogen receptors (ER) is about 1000 less than that of E2. We determined the mRNA expression of undifferentiation markers (Oct4, Sox2 and Zfp206) and cardiomyocyte differentiation markers (cardiac alpha-MHC, beta-MHC and myosin light chain isoform-2V) using real-time PCR. In ESC, undifferentiation markers were identified. It is of interest that treatment with OP, NP or E2 induced a significant increase (1.4 5.5-fold) in Oct4 expression at the transcription levels according to a dose- and time-dependent manner. However, no difference was observed in the expression of Sox2 and Zfp206 genes in ESC, suggesting that OP and NP may play a role as an Oct4 enhancer in ESC. In addition, both undifferentiation and cardiomyocyte differentiation markers were identified in EB. Treatment with OP and NP induced a significant increase in the expression of Oct4, Sox2 and Zfp206 genes at the transcription levels in a dose-dependent manner for 4 days, whereas Oct4 expression was only induced at these doses for 8 days. In contrast, cardiomyocyte differentiation markers were reduced by these ED in EB. Taken together, these results suggest that OP and NP play a role as a positive regulator in the undifferentiation process of ESC and EB, and maintenance and differentiation of mouse ESC.


2017 ◽  
Vol 13 (1) ◽  
pp. 110-121 ◽  
Author(s):  
Bei Zheng ◽  
Jiadan Wang ◽  
Leilei Tang ◽  
Chao Tan ◽  
Zhe Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document