scholarly journals Effects of radiopaque double antibiotic pastes on the proliferation, alkaline phosphatase activity and mineral deposition of dental pulp stem cells

2020 ◽  
Vol 117 ◽  
pp. 104764
Author(s):  
Jennifer L. Wu ◽  
Patrick W. McIntyre ◽  
Jung Min Hong ◽  
Ghaeth H. Yassen ◽  
Angela Bruzzaniti
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Noriko Goto ◽  
Katsumi Fujimoto ◽  
Sakiko Fujii ◽  
Hiroko Ida-Yonemochi ◽  
Hayato Ohshima ◽  
...  

Msh homeobox 1 (MSX1) encodes a transcription factor implicated in embryonic development of limbs and craniofacial tissues including bone and teeth. Although MSX1 regulates osteoblast differentiation in the cranial bone of young animal, little is known about the contribution of MSX1 to the osteogenic potential of human cells. In the present study, we investigate the role of MSX1 in osteogenic differentiation of human dental pulp stem cells isolated from deciduous teeth. When these cells were exposed to osteogenesis-induction medium, runt-related transcription factor-2(RUNX2), bone morphogenetic protein-2(BMP2), alkaline phosphatase(ALPL), and osteocalcin(OCN)mRNA levels, as well as alkaline phosphatase activity, increased on days 4–12, and thereafter the matrix was calcified on day 14. However, knockdown ofMSX1with small interfering RNA abolished the induction of the osteoblast-related gene expression, alkaline phosphatase activity, and calcification. Interestingly, DNA microarray and PCR analyses revealed thatMSX1knockdown induced the sterol regulatory element-binding protein 2(SREBP2)transcriptional factor and its downstream target genes in the cholesterol synthesis pathway. Inhibition of cholesterol synthesis enhances osteoblast differentiation of various mesenchymal cells. Thus, MSX1 may downregulate the cholesterol synthesis-related genes to ensure osteoblast differentiation of human dental pulp stem cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Paula A. Baldión ◽  
Myriam L. Velandia-Romero ◽  
Jaime E. Castellanos

Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC) were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1), and OLC expanded after trypsinization (EXP-21) were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4320-4320
Author(s):  
Yukinori Nakamura ◽  
Toshiaki Yujiri ◽  
Ryouhei Nawata ◽  
Kozo Tagami ◽  
Yukio Tanizawa

Abstract BCR-ABL oncogene, the molecular hallmark of chronic myelogenous leukemia, arises in a primitive hematopoietic stem cell that has the capacity for both differentiation and self-renewal. Its product, Bcr-Abl protein, has been shown to activate STAT3 and to promote self-renewal in ES cells, even in the absence of leukemia inhibitory factor (LIF). MEK kinase 1 (MEKK1) is a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase involved in Bcr-Abl signal transduction (Oncogene22:7774, 2003). To investigate the role of MEKK1 in Bcr-Abl-induced transformation of ES cells, p210 Bcr-Abl was stably transfected into wild type (WT+p210) and MEKK1−/− (MEKK1−/−+p210) ES cells. Bcr-Abl enhanced both MEKK1 expression and activation in ES cells, as it does in other Bcr-Abl-transformed cells. In the absence of LIF, WT+p210 cells showed constitutive STAT3 activation and formed compact colonies having strong alkaline phosphatase activity, a characteristic phenotype of undifferentiated ES cells. MEKK1−/−+p210 cells, by contrast, showed less STAT3 activity than WT+p210 cells and formed large, flattened colonies having weak alkaline phosphatase activity, a phenotype of differentiated ES cells. These results indicate that MEKK1 plays an essential role in Bcr-Abl-induced STAT3 activation and in the capacity for LIF-independent self-renewal, and may thus be involved in Bcr-Abl-mediated leukemogenesis in stem cells.


2009 ◽  
Vol 8 (4) ◽  
pp. 28-32 ◽  
Author(s):  
I. V. Zapuskalov ◽  
O. I. Krivosheina ◽  
I. A. Khlusov ◽  
Ya. A. Martusevich ◽  
N. M. Shevtsova ◽  
...  

The culture of stromal stem cells was incubated under constant and dynamic conditions. The incubation period was lasting 48 h. Intracellular enzyme activity of stromal stem cells were carried out with cytochemical methods. Alkaline phosphatase activity was increased under dynamic conditions, differentiation of stromal stem cells being accelerated comparatively steady-state conditions.


Sign in / Sign up

Export Citation Format

Share Document