scholarly journals Cell wall functional activity and metal accumulation of halophytic plant species Plantago maritima and Triglochin maritima on the White Sea littoral zone (NW Russia)

2020 ◽  
Vol 10 (2) ◽  
pp. 169-188
Author(s):  
Elena N. Terebova ◽  
Evgenya F. Markovskaya ◽  
Vera I. Androsova ◽  
Maria A. Pavlova ◽  
Natalia V. Oreshnikova

The presented study supplements the knowledge on ion-exchange capacity, swelling capacity (elasticity) of the plant cell wall, and the accumulation of heavy metals in halophytic species Plantago maritima and Triglochin maritima in the tidal zone of the White Sea western coast. The littoral soils of the coastal territories are sandy or rocky-sandy, medium and slightly saline with poor content of organic substances, Mn, Zn, Ni, and Pb. Studied soils are considered as uncontaminated by heavy metals because they contain background amounts of Fe and Cu. Sea water is significantly polluted by Fe (3.8 MPC) and Ni (55 MPC), has poor content of Zn and Cu and background level of Pb and Mn. The coastal dominant plant species P. maritima and T. maritima were characterized by intensive metals accumulation which was reflected in the coefficient of biological absorption (CBA) of metal by a whole plant. For P. maritima the following metal accumulation series was obtained: Cu (3.29)> Zn (2.81)> Ni (1.57)> Pb (1.30)> Mn (1.21)> Fe (0.97), and for T. maritima: Ni (3.80)> Fe (2.08)> Cu (1.91)> Zn (1.84)> Pb (1.51)> Mn (1.31). Roots accumulated 50–70% of Ni, Cu, Zn, Pb and Mn of the total metal content in the plant while leaves and stems contained 30–50%. Fe was allocated mainly in the roots (80%). The ion-exchange capacity of the plant cell wall for P. maritima and T. maritima was established as follows correspondingly: 3570–3700 and 2710–3070 μmol g-1 dry cell weight per leaf; 2310–2350 and 1160–1250 μmol g-1 dry cell weight per root.

Author(s):  
Liudmila L. Demina ◽  
Dmitry F. Budko ◽  
Alexander N. Novigatsky ◽  
Tatiana N. Alexсeeva ◽  
Anastasia I. Kochenkova

1997 ◽  
Vol 206 (2-3) ◽  
pp. 95-105 ◽  
Author(s):  
N MEDVEDEV ◽  
N PANICHEV ◽  
H HYVARINEN

2021 ◽  
pp. 295-306
Author(s):  
Eugenya F. Markovskaya ◽  
Elena N. Terebova ◽  
Elena N. Gulyaeva ◽  
Vera I. Androsova ◽  
Maria A. Pavlova ◽  
...  

Author(s):  
Alina Zimovets ◽  
Alina Zimovets ◽  
Yury Fedorov ◽  
Yury Fedorov ◽  
Asya Ovsepyan ◽  
...  

A study was conducted to investigate the level of heavy metals in bottom sediments of the Northern Dvina mouth area and the White Sea in various seasons since 2004. Of greatest interest for the study was presented as such heavy metals as Hg, Pb, Cd, Cu, Ni, Zn, Cr, which belong to the priority group of toxic elements. The heavy metals concentrations were determined with atomic absorption spectrometer. Also the grain-size composition, concentrations of organic carbon and values of hydrogen ion exponent (pH) and redox potential (Eh) in bottom sediments were determined. It was found that the levels of heavy metals in sediments significantly changed in the lateral radial direction. There is a tendency to increased concentrations of some heavy metals downstream of the river. The high concentrations of heavy metals were found within the influence of cities and towns. So the extremely high mercury concentrations were found in the sediments of small and shallow channels crossing the Arkhangelsk city. The study of heavy metal concentrations in the bottom sediments along the profile “the Northern Dvina - Dvina Bay - White sea” showed that the marginal filter contributes to the coprecipitation with suspended metals of anthropogenic genesis. These processes greatly reduce the contamination risk of the White Sea. Thus, the impact of the river on the ecosystem of the White Sea outside the marginal filter is significantly less.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Supitcha Rungrodnimitchai

This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5–5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb2+sorption test, the modified rice straw (RH-NaOH 450W) removed Pb2+much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.


Author(s):  
Alina Zimovets ◽  
Alina Zimovets ◽  
Yury Fedorov ◽  
Yury Fedorov ◽  
Asya Ovsepyan ◽  
...  

A study was conducted to investigate the level of heavy metals in bottom sediments of the Northern Dvina mouth area and the White Sea in various seasons since 2004. Of greatest interest for the study was presented as such heavy metals as Hg, Pb, Cd, Cu, Ni, Zn, Cr, which belong to the priority group of toxic elements. The heavy metals concentrations were determined with atomic absorption spectrometer. Also the grain-size composition, concentrations of organic carbon and values of hydrogen ion exponent (pH) and redox potential (Eh) in bottom sediments were determined. It was found that the levels of heavy metals in sediments significantly changed in the lateral radial direction. There is a tendency to increased concentrations of some heavy metals downstream of the river. The high concentrations of heavy metals were found within the influence of cities and towns. So the extremely high mercury concentrations were found in the sediments of small and shallow channels crossing the Arkhangelsk city. The study of heavy metal concentrations in the bottom sediments along the profile “the Northern Dvina - Dvina Bay - White sea” showed that the marginal filter contributes to the coprecipitation with suspended metals of anthropogenic genesis. These processes greatly reduce the contamination risk of the White Sea. Thus, the impact of the river on the ecosystem of the White Sea outside the marginal filter is significantly less.


Sign in / Sign up

Export Citation Format

Share Document