scholarly journals Experimental Formability Study of Ti6Al4V Sheet Metal using Friction Stir Heat Assisted Single Point Incremental Forming Process

2022 ◽  
Vol 35 (3) ◽  
pp. 560-566
2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


Author(s):  
Shalin Marathe ◽  
Harit Raval

Abstract The automobile, transportation and shipbuilding industries are aiming at fuel efficient products. In order to enhance the fuel efficiency, the overall weight of the product should be brought down. This requirement has increased the use of material like aluminium and its alloys. But, it is difficult to weld aluminium using conventional welding processes. This problem can be solved by inventions like friction stir welding (FSW) process. During fabrication of product, FSW joints are subjected to many different processes and forming is one of them. During conventional forming, the formability of the welded blanks is found to be lower than the formability of the parent blank involved in it. One of the major reasons for reduction in formability is the global deformation provided on the blank during forming process. In order to improve the formability of homogeneous blanks, Single Point Incremental Forming (SPIF) is found to be giving excellent results. So, in this work formability of the welded blanks is investigated during the SPIF process. Friction Stir Welding is used to fabricate the welded blanks using AA 6061 T6 as base material. Welded blanks are formed in to truncated cone through SPIF process. CNC milling machine is used as SPIF machine tool to perform the experimental work. In order to avoid direct contact between weld seam and forming tool, a dummy sheet was used between them. As responses forming limit curve (FLC), surface roughness, and thinning are investigated. It was found that use of dummy sheet leads to improve the surface finish of the formed blank. The formability of the blank was found less in comparison to the parent metal involved in it. Uneven distribution of mechanical properties in the welded blanks leads to decrease the formability of the welded blanks.


Author(s):  
Chetan P. Nikhare

Abstract A substantial increase in demand on the sheet metal part usage in aerospace and automotive industries is due to the increase in the sale of these products to ease the transportation. However, due to the increase in fuel prices and further environmental regulation had left no choice but to manufacture more fuel efficient and inexpensive vehicles. These heavy demands force researchers to think outside the box. Many innovative research projects came to replace the conventional sheet metal forming of which single point incremental forming is one of them. SPIF is the emerging die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any processing time to undergo plastic deformation. It has several advantages over the conventional process like high process flexibility, elimination of die, complex shape and better formability. Previous literature provides enormous research on formability of metal during this process, process with various metals and hybrid metals, the influence of various process parameter, but residual formability after this process is untouched. Thus, the aim of this paper is to investigate the residual formability of the formed parts using single point incremental forming and then restrike with a conventional tool. The common process parameters of single point incremental forming were varied, and residual formability was studied through the conventional process. The strain and thickness distribution were measured and analyzed. In addition, the forming limit of the part was plotted and compared.


2015 ◽  
Vol 658 ◽  
pp. 177-181
Author(s):  
Kittiphat Rattanachan

To produce the forming limited diagram for predicting and studying material behavior in sheet metal forming, grid etching or grid marking on blank surface are applied before forming. But in single point incremental forming process, sheet metal blanks are subjected to highly strain or highly deformation which the conventional gridding is no longer to be occurred on the surface of formed part. And some material such as titanium, nickel based alloy etc are difficulty to etch the grid marks on its surface. So this paper is proposed the drilling hole technique to substitute with the grid etching technique in single point incremental forming process. The holes 2 mm. diameter were drilled on the SUS 304 stainless steel blank before forming. The deformed holes are calculated as true major strain and true minor strain and plot into a forming limited diagram. The results are compared with the conventional etching techniques which show an according trend. The drilling hole technique could be used in study the material behavior in single point incremental forming, it a low cost convenient and easy than grid etching technique.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4719
Author(s):  
Kyu-Seok Jung ◽  
Jae-Hyeong Yu ◽  
Wan-Jin Chung ◽  
Chang-Whan Lee

Incremental sheet metal forming can manufacture various sheet metal products without a dedicated punch and die set. In this study, we developed a two-stage incremental forming process to decrease shape errors in the conventional incremental forming process. The forming process was classified into the first single point incremental forming (1st SPIF) process for forming a product and the counter single point incremental forming (counter SPIF) process to decrease shape error. The counter SPIF gives bending deformation in the opposite direction. Furthermore, the counter SPIF compensates for shape errors, such as section deflection, skirt spring-back, final forming height, and round. The tool path of the counter SPIF has been optimized through a relatively simple optimization method by modifying the tool path of the previous step. The tool path of the 1st SPIF depends on the geometry of the product. An experiment was performed to form a circular cup shape to verify the proposed tool path of the 1st and counter SPIF. The result confirmed that the shape error decreased when compared to the conventional SPIF. For the application, the ship-hull geometry was adopted. Experimental results demonstrated the feasibility of the two-stage incremental forming process.


Author(s):  
Senthil Kumar Velukkudi Santhanam ◽  
Vigneshwaran Ganesan ◽  
Subramanian Pillappan Shanmuganatan

In the recent manufacturing trend and, in particular, in sheet metal forming, the requirement of customized production is still growing. Incremental forming is a special technique requiring no high capacity presses or set of dies, thus meeting the increasing demand for low volume production and rapid prototyping. The complex three dimensional parts of sheet metals are formed by the computer numerical control (CNC) movement of a simple generative hemispherical tool. In this paper, the single point incremental forming process is performed on friction stir processed AA 6063-O alloy. The process parameters for the experiment are taken based on L9 Orthogonal array. In this paper the maximum wall angle or the formability is investigated on a formed pyramid frusta. It is inferred that Friction stir process has improved the ductility of the aluminium alloy thus contributing to enhanced formability.


2014 ◽  
Vol 979 ◽  
pp. 335-338
Author(s):  
Kittiphat Rattanachan ◽  
Chatchapol Chungchoo

The single point incremental forming process (SPIF) are suited for sheet metal prototyping, because it is a low cost production process that produces sheet metal part without any used of die, and easy to adjust the part’s geometry by change toolpath. But the quality of forming parts is still in doubt. In some applications, such as mould cavity for rapid mould and the medical parts, in this case the inside surface roughness plays an importance role. In this paper, the SPIF process parameters that affected to the inner surface roughness were experimental studied. The investigated parameters are composing of tool feed rate, side overlap, depth step and tool radius. The 2k-p factorial experimental design was used to analyze the interaction between each parameter. The results showed that increasing feed rate and depth step decreased inner surface roughness. Reducing tool rotational speed and feed rate reduced inner surface roughness. So increasing depth step with decreasing side overlap reduced inner surface roughness. The large tool radius and lower side overlap improved inner surface roughness. The large tool radius and higher depth step improved inner surface roughness. And last, reducing tool rotational speed with larger tool radius, the inner surface roughness is decreased.


2014 ◽  
Vol 979 ◽  
pp. 331-334
Author(s):  
Kittiphat Rattanachan ◽  
Chatchapol Chungchoo

Single point incremental forming (SPIF) process is the latest sheet metal forming technique, which developed in the around 1990, this process could generates a local strain on a sheet metal by mean of small rotation forming tool travel follow CNC toolpath on sheet metal blank to form a shell part. The incredible elongating without failure occurs is the main advantage of this process. This paper attempt to explain the deformation mechanism of steel sheet that formed by SPIF in the metallurgical views. The different degree of deformation were investigated by optical microscope, the grain size deformation was used as a data for math modeling of the deformation mechanism.


2018 ◽  
Vol 178 ◽  
pp. 02004 ◽  
Author(s):  
Daniel Nasulea ◽  
Gheorghe Oancea

In incremental sheet forming processes, the expensive dedicated tool are avoided and replaced with a cheap and simple fixing device which support the sheet metal blanks. The current paper presents how a fixing device used for single point incremental forming device is designed, FEM simulated and manufactured. The fixing device can be used for parts with a cone frustum and pyramidal frustum made of DC05 deep drawing steel. The forces developed in the process and the device displacements were estimated using FEM simulation. The device components were manufactured using a CNC machines and the physical assembly is also presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document