Advances in the study of stable isotope composition of leaf water in plants

2013 ◽  
Vol 33 (4) ◽  
pp. 1031-1041 ◽  
Author(s):  
罗伦 LUO Lun ◽  
余武生 YU Wusheng ◽  
万诗敏 WAN Shimin ◽  
周平 ZHOU Ping
2020 ◽  
Author(s):  
Matthias Cuntz ◽  
Lucas A Cernusak ◽  

<p>Several important isotopic biomarkers derive at least part of their signal from the stable isotope composition of leaf water (e.g., leaf wax δ<sup>2</sup>H, cellulose δ<sup>2</sup>H and δ<sup>18</sup>O, lignin δ<sup>18</sup>O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls a given leaf water stable isotope signal. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water <sup>2</sup>H concentration could differ from that of <sup>18</sup>O concentration. Our dataset comprises 690 observations from 35 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal primarily take place. The Craig-Gordon equation was generally a good predictor for daytime bulk leaf water stable isotope composition for both δ<sup>2</sup>H (R<sup>2</sup>=0.86, p<0.001) and δ<sup>18</sup>O (R<sup>2</sup>=0.63, p<0.001). It showed about 10% admixture of source water was caused by unenriched water pools such as leaf veins or the Péclet effect. Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of source water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of δ<sup>2</sup>H and δ<sup>18</sup>O are predominantly driven by different environmental variables: leaf water δ<sup>2</sup>H correlated most strongly with the δ<sup>2</sup>H of source water (R<sup>2</sup>=0.68, p<0.001) and atmospheric vapour (R<sup>2</sup>=0.63, p<0.001), whereas leaf water δ<sup>18</sup>O correlated most strongly with air relative humidity (R<sup>2</sup>=0.46, p<0.001). We conclude that these two isotopic signals of leaf water are not simply mirror images of the same environmental information, but carry distinct signals of different climate factors, with crucial implications for the interpretation of downstream isotopic biomarkers.</p>


2019 ◽  
Vol 98 ◽  
pp. 07013
Author(s):  
Thomas Kretzschmar ◽  
Matteo Lelli ◽  
Ruth Alfaro ◽  
Juan Ignacio Sanchez ◽  
Yann Rene Ramos

It is important to develop a regional hydrogeological model to identify possible recharge and discharge areas for a sustainable use of a geothermal reservoir. The Los Humeros geothermal area is situated within five surficial watersheds and coveres an area of more than 15.000 km2. A total of 208 well and spring samples were collected between June 2017 and November 2018. The stable isotope data for this region define a regression line of δDH2O = 8.032·δ18O + 12 and indicate that groundwater is recharged by regional precipitation. At least 39 groundwater wells, with a maximum temperature of 35 °C, show temperatures above the reported mean average surface temperature of 15 °C. Characteristic elements for geothermal reservoir fluids (B, Li, As) are also present in these groundwaters, indicating a possible connection between the reservoir fluid and the local groundwater through local fracture systems. Concentration of B in these hot wells is between 150 and 35000 ppb.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82205 ◽  
Author(s):  
Tatiana Lemos Bisi ◽  
Paulo Renato Dorneles ◽  
José Lailson-Brito ◽  
Gilles Lepoint ◽  
Alexandre de Freitas Azevedo ◽  
...  

2005 ◽  
Vol 19 (14) ◽  
pp. 1937-1942 ◽  
Author(s):  
Bojlul Bahar ◽  
Frank J. Monahan ◽  
Aidan P. Moloney ◽  
Padraig O'Kiely ◽  
Charlie M. Scrimgeour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document