Soil nitrogen and phosphorus stoichiometry in a degradation series ofKobresia humulismeadows in the Tibetan Plateau

2013 ◽  
Vol 33 (17) ◽  
pp. 5245-5251 ◽  
Author(s):  
林丽 LIN Li ◽  
李以康 LI Yikang ◽  
张法伟 ZHANG Fawei ◽  
杜岩功 DU Yangong ◽  
郭小伟 GUO Xiaowei ◽  
...  
2009 ◽  
Vol 15 (12) ◽  
pp. 3001-3017 ◽  
Author(s):  
FRANK BAUMANN ◽  
JIN-SHENG HE ◽  
KARSTEN SCHMIDT ◽  
PETER KÜHN ◽  
THOMAS SCHOLTEN

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246433
Author(s):  
Danli Yang ◽  
Ji Luo ◽  
Peihao Peng ◽  
Wei Li ◽  
Wenbo Shi ◽  
...  

As the two limiting nutrients for plants in most terrestrial ecosystems, nitrogen (N) and phosphorus (P) are essential for the development of succession forests. Vegetation N:P stoichiometry is a useful tool for detecting nutrient limitation. In the present work, chronosequence analysis was employed to research N and P accumulation dynamics and their stoichiometry during forest primary succession in a glacier retreat area on the Tibetan Plateau. Our results showed that: (1) total ecosystem N and P pools increased from 97 kg hm−2 to 7186 kg hm−2 and 25 kg hm−2 to 487 kg hm−2, respectively, with increasing glacier retreat year; (2) the proportion of the organic soil N pool to total ecosystem N sharply increased with increasing glacier retreat year, but the proportion of the organic soil and the vegetation P pools to the total ecosystem P was equivalent after 125 y of recession; (3) the N:P ratio for tree leaves ranged from 10.1 to 14.3, whereas the N:P ratio for total vegetation decreased form 13.3 to 8.4 and remained constant after 35 y of recession, and the N:P ratio for organic soil increased from 0.2 to 23.1 with increasing glacier retreat. These results suggested that organic soil N increased with increasing years of glacier retreat, which may be the main sink for atmospheric N, whereas increased P accumulation in vegetation after 125 y of recession suggested that much of the soil P was transformed into the biomass P pool. As the N:P ratio for vegetation maintained a low level for 35–125 y of recession, we suggested that N might be the main limiting element for plant growth in the development of this ecosystem.


2018 ◽  
Vol 10 (12) ◽  
pp. 4454
Author(s):  
Guangshuai Wang ◽  
Yueping Liang ◽  
Fei Ren ◽  
Xiaoxia Yang ◽  
Zhaorong Mi ◽  
...  

The cycle of key nutrient elements nitrogen (N) and phosphorus (P) has been massively altered by anthropogenic activities. Little is known about the impacts on greenhouse gas (GHG) emission of the large nutrient additions occurring in the alpine grasslands of the Tibetan Plateau. We investigated soil surface emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) under control, N, P and combined nitrogen and phosphorus (NP) additions from July 2011 to September 2012. Compared to the control, CO2 flux significantly increased by 14.6% and 27.4% following P and NP addition, respectively. The interaction of NP addition had a significant influence on CO2 flux during the non-growing season and the spring thaw period. Compared to the control, CH4 flux decreased by 9.9%, 23.2% and 26.7% following N, P and NP additions, respectively, and no interactive effect of NP addition was found in any period. Soil N2O flux was significantly increased 2.6 fold and 3.3 fold, following N and NP addition treatments, respectively, and there was no interaction effect of NP addition together. The contribution of cumulative CO2 emission during the non-growing season was less than 20% of the annual budget, but cumulative CH4 and N2O emissions during the same period can account for 37.3–48.9% and 44.7–59.5% of the annual budget, respectively. Methane and N2O emissions did not increase greatly during the spring thawing period, with contributions of only 0.4–3.6% and 10.3–12.3% of the annual budget, respectively. Our results suggest that N and P addition could increase CO2 and N2O emissions and reduce CH4 emission. Furthermore, although the non-growing season is very cold and long, cumulative CH4 and N2O emissions are considerable during this period and cannot be neglected by future studies evaluating the greenhouse gas emission budget in the Tibetan plateau.


Sign in / Sign up

Export Citation Format

Share Document