Responses of soil temperature, moisture and respiration to experimental warming in a subtropical evergreen broad-leaved forest in Ailao Mountains, Yunnan

2015 ◽  
Vol 35 (22) ◽  
Author(s):  
张一平 ZHANG Yiping ◽  
武传胜 WU Chuangsheng ◽  
梁乃申 LIANG Naishen ◽  
沙丽清 SHA Liqing ◽  
罗鑫 LUO Xing ◽  
...  
2018 ◽  
Vol 42 (1) ◽  
Author(s):  
Seok-Hee Jeong ◽  
Ji-Young Eom ◽  
Joo-Yeon Park ◽  
Jung-Hwa Chun ◽  
Jae-Seok Lee

Abstract Background For understanding and evaluating a more realistic and accurate assessment of ecosystem carbon balance related with environmental change or difference, it is necessary to analyze the various interrelationships between soil respiration and environmental factors. However, the soil temperature is mainly used for gap filling and estimation of soil respiration (Rs) under environmental change. Under the fact that changes in precipitation patterns due to climate change are expected, the effects of soil moisture content (SMC) on soil respiration have not been well studied relative to soil temperature. In this study, we attempt to analyze relationship between precipitation and soil respiration in temperate deciduous broad-leaved forest for 2 years in Gwangneung. Results The average soil temperature (Ts) measured at a depth of 5 cm during the full study period was 12.0 °C. The minimum value for monthly Ts was − 0.4 °C in February 2015 and 2.0 °C in January 2016. The maximum monthly Ts was 23.6 °C in August in both years. In 2015, annual precipitation was 823.4 mm and it was 1003.8 mm in 2016. The amount of precipitation increased by 21.9% in 2016 compared to 2015, but in 2015, it rained for 8 days more than in 2016. In 2015, the pattern of low precipitation was continuously shown, and there was a long dry period as well as a period of concentrated precipitation in 2016. 473.7 mm of precipitation, which accounted for about 51.8% of the precipitation during study period, was concentrated during summer (June to August) in 2016. The maximum values of daily Rs in both years were observed on the day when precipitation of 20 mm or more. From this, the maximum Rs value in 2015 was 784.3 mg CO2 m−2 h−1 in July when 26.8 mm of daily precipitation was measured. The maximum was 913.6 mg CO2 m−2 h−1 in August in 2016, when 23.8 mm of daily precipitation was measured. Rs on a rainy day was 1.5~1.6 times higher than it without precipitation. Consequently, the annual Rs in 2016 was about 12% higher than it was in 2015. It was shown a result of a 14% increase in summer precipitation from 2015. Conclusions In this study, it was concluded that the precipitation pattern has a great effect on soil respiration. We confirmed that short-term but intense precipitation suppressed soil respiration due to a rapid increase in soil moisture, while sustained and adequate precipitation activated Rs. In especially, it is very important role on Rs in potential activating period such as summer high temperature season. Therefore, the accuracy of the calculated values by functional equation can be improved by considering the precipitation in addition to the soil temperature applied as the main factor for long-term prediction of soil respiration. In addition to this, we believe that the accuracy can be further improved by introducing an estimation equation based on seasonal temperature and soil moisture.


1996 ◽  
pp. 64-67 ◽  
Author(s):  
Nguen Nghia Thin ◽  
Nguen Ba Thu ◽  
Tran Van Thuy

The tropical seasonal rainy evergreen broad-leaved forest vegetation of the Cucphoung National Park has been classified and the distribution of plant communities has been shown on the map using the relations of vegetation to geology, geomorphology and pedology. The method of vegetation mapping includes: 1) the identifying of vegetation types in the remote-sensed materials (aerial photographs and satellite images); 2) field work to compile the interpretation keys and to characterize all the communities of a study area; 3) compilation of the final vegetation map using the combined information. In the classification presented a number of different level vegetation units have been identified: formation classes (3), formation sub-classes (3), formation groups (3), formations (4), subformations (10) and communities (19). Communities have been taken as mapping units. So in the vegetation map of the National Park 19 vegetation categories has been shown altogether, among them 13 are natural primary communities, and 6 are the secondary, anthropogenic ones. The secondary succession goes through 3 main stages: grassland herbaceous xerophytic vegetation, xerophytic scrub, dense forest.


2012 ◽  
Vol 17 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Jun HE ◽  
Xiuhai ZHAO ◽  
Chunyu ZHANG ◽  
Yuzhen JIA ◽  
Juan FAN ◽  
...  

2013 ◽  
Vol 37 (3) ◽  
pp. 230-238 ◽  
Author(s):  
Jun LIU ◽  
Qing-Pei YANG ◽  
Qing-Ni SONG ◽  
Ding-Kun YU ◽  
Guang-Yao YANG ◽  
...  

Author(s):  
D.V. ZATSARINNAYA ◽  
E.M. VOLKOVA ◽  
A.A. SIRIN

Vegetation cover and environmental factors were studied in the system of karts mires in the broad- leaved forest zone in Tula Region, Central European Russia. Mires are formed in the sinkholes and characterized by rather low anthropogenic disturbances. These mires are characterised by floating peat mats and variety of vegetation communities which are differ by ecological conditions (water levels, acidity and nutrition). Development and growth of floating mats change water and mineral feeding that leads to succession of vegetation communities.


Ecology ◽  
1991 ◽  
Vol 72 (4) ◽  
pp. 1464-1471 ◽  
Author(s):  
Truman P. Young ◽  
Stephen P. Hubbell

Sign in / Sign up

Export Citation Format

Share Document