Classification of vegetation in Cucphuong National Park with the aim of large-scale mapping, Vietnam

1996 ◽  
pp. 64-67 ◽  
Author(s):  
Nguen Nghia Thin ◽  
Nguen Ba Thu ◽  
Tran Van Thuy

The tropical seasonal rainy evergreen broad-leaved forest vegetation of the Cucphoung National Park has been classified and the distribution of plant communities has been shown on the map using the relations of vegetation to geology, geomorphology and pedology. The method of vegetation mapping includes: 1) the identifying of vegetation types in the remote-sensed materials (aerial photographs and satellite images); 2) field work to compile the interpretation keys and to characterize all the communities of a study area; 3) compilation of the final vegetation map using the combined information. In the classification presented a number of different level vegetation units have been identified: formation classes (3), formation sub-classes (3), formation groups (3), formations (4), subformations (10) and communities (19). Communities have been taken as mapping units. So in the vegetation map of the National Park 19 vegetation categories has been shown altogether, among them 13 are natural primary communities, and 6 are the secondary, anthropogenic ones. The secondary succession goes through 3 main stages: grassland herbaceous xerophytic vegetation, xerophytic scrub, dense forest.

2019 ◽  
pp. 18-38 ◽  
Author(s):  
D. G. Grummo ◽  
R. V. Tsvirko ◽  
N. A. Zeliankevich ◽  
E. Y. Kulikova ◽  
O. V. Sozinov

In 2013–2018 studies of phytocoenotic diversity were carried out in the territory of the National Park “Belovezhskaya Pushcha” (Belarus). As a result, a classification scheme of vegetation was developed based on the floristic approach (Braun-Blanquet method) and a large-scale (1 : 100 000) geobotanical map was made. The map is compiled on the basis of the field data, analysis of remote sensing data, literary and cartographic sources, land and forest inventory materials. The compilation of this geobotanical map was consisted of 4 stages. 1) The pre-field (cameral) stage included: collection of archive data about the investigated territory, selection of space imagery, primary processing of digital images and data visualization, interpretation, automatic non-controlled classification, preliminary map compilation. 2) Field studies provided for surface interpretation of vegetation based on satellite imagery.In total, 1851 complete geobotanical relevés were made during field studies, including 743 forest, 452 mire, 576 meadow, segetal and ruderal plant communities. 3) The post-field (cameral) stage, including the preparation of the cartographic base; the systematization of field materials; the development of the final legend; the systematization of image standards for creating cartographic models; the controlled classification of images with preliminary segmentation by the method of superpixels (SNIC-Simple Non-Iterative Clustering); assessment reliability of classification results; geometric and geographical generalization; making an original map. 4) Field check (verification) of geobotanical map. During the 2018 field season a vegetation map of the protected area was checked with the compilation of the final reliability protocol. The main unit of the map legend, a syntaxon of the floristic classification of vegetation, is the association, however, along with the association, to display the typology of the vegetation cover, syntaxons of as a higher hierarchical rank (union) and lower (options, facies), as well as rankless communities are used. In establishing the names of associations and subassociations and in comparative analysis various regional works were taken into account (Matuszkiewicz, Matuszkiewicz, 1954; Czerwiński, 1978; Faliński, 1991, 1994а, b; Kwiatkowski, 1994; Bulokhov, Solomeshch, 2003; Semenischenkov, 2014; Lądowe ekosystemy…, 2016; Dubyna et al., 2019;). In the legend, the mapped units reflecting the restoration stages of the association are marked with letter indices. Heterogeneous areas consisting of regularly and repeatedly alternating plant communities are presented on the map as complexes (phytocoenoses-complex). In total, the map legend contains 75 mapped vegetation units, including forest — 40, shrub — 4, mire — 13, meadow and wasteland — 11, ruderal and segetal vegetation — 6, deforestation and disturbed forest habitats — 1. Separate units reflect other lands (water, residential development, etc.) The practical application of the geobotanical map for identifying key (important for biodiversity conservation) habitats and developing a science-based approach to the functional zoning of protected areas is shown.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 374
Author(s):  
Piotr Brewczyński ◽  
Kamil Grałek ◽  
Piotr Bilański

The small-sized gametophytes and sporophytes of the green shield-moss Buxbaumia viridis (Moug.) Brid. make it difficult to study. However, in Europe, there has been increasing interest in this species in the past few years, mostly as a result of the implementation of the Natura 2000 network. In Poland, B. viridis has only been reported in isolated studies that have been limited in terms of area and the number of participating workers. One of the Polish regions where B. viridis was recently recorded is the Bieszczady Mountains, but there have been no large-scale surveys of that region to date. The objective of the current work was to describe the B. viridis population in the Bieszczady Mountains in terms of its spatial distribution and abundance, investigate its selected microhabitat preferences, and evaluate the conservation status of this moss species within the Natura 2000 site Bieszczady PLC180001. The studied region encompassed 93,490.44 ha, including 69,056.23 ha of managed forests and 24,434.21 ha of forests belonging to the Bieszczady National Park. A preliminary survey was conducted in the Cisna Forest District (forest area of 19,555.82 ha) on 15–17 November 2017, while the main survey was performed in selected forest subcompartments of four forest districts—Baligród, Komańcza, Lutowiska, and Stuposiany—as well as the Bieszczady National Park from 5 to 16 November 2018. The field work consisted of searching for B. viridis sporophytes and setae and recording selected population and locality characteristics. The study led to the discovery of 353 new B. viridis localities in 202 study areas, with 9197 diploid individuals (sporophytes or setae only) growing in 545 microhabitats. The number of B. viridis localities discovered in the Bieszczady Mountains during 17 days of survey in 2017 and 2018 was two times higher than the combined number of localities previously found in Poland over more than 150 years (159 localities). Additionally, the number of sporophytes and setae identified was two times greater than their overall number in previous records. In addition, this study provides information about selected microhabitat preferences and the conservation status of this moss in the Bieszczady Natura 2000 site.


Hoehnea ◽  
2012 ◽  
Vol 39 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Maria Cláudia Melo Pacheco de Medeiros ◽  
Isabel Fernandes de Aguiar Mattos ◽  
Marina Mitsue Kanashiro ◽  
Jorge Yoshio Tamashiro ◽  
Marcos Pereira Marinho Aidar

This study aimed to map phytophysiognomies of an area of Ombrophilous Dense Forest at Parque Estadual da Serra do Mar and characterize their floristic composition. Photointerpretation of aerial photographs in scale of 1:35,000 was realized in association with field work. Thirteen physiognomies were mapped and they were classified as Montane Ombrophilous Dense Forest, Alluvial Ombrophilous Dense Forest or Secondary System. Three physiognomies identified at Casa de Pedra streamlet's basin were studied with more details. Riparian forest (RF), valley forest (VF), and hill forest (HF) presented some floristic distinction, as confirmed by Detrended Correspondence Analysis (DCA) and Indicator Species Analysis (ISA) conducted here. Anthropic or natural disturbances and heterogeneity of environmental conditions may be the causes of physiognomic variation in the vegetation of the region. The results presented here may be useful to decisions related to management and conservation of Núcleo Santa Virgínia forests, in general.


2013 ◽  
Vol 62 (1-6) ◽  
pp. 124-126 ◽  
Author(s):  
Hong-Yu Niu ◽  
Wan-Hui Ye ◽  
Zheng-Feng Wang ◽  
Ying Chen ◽  
Hong-Lin Cao ◽  
...  

Abstract Schima superba is a common dominant tree species in evergreen broad-leaved forest in subtropical China. Despite its multiple usages in wood industry, reforestation and traditional Chinese medicine, its genetic diversity is poorly studied. To help studying its genetic diversity and structure in the future, after microsatellite enrichment and screening, we identified 16 microsatellites in S. superba. These markers showed polymorphism in three populations. The number of alleles per locus ranged from 3 to 32 with a mean of 14. Within populations, the observed and unbiased expected heterozygosities ranged from 0.048 to 0.926 and from 0.048 to 0.949, respectively. The newly developed 16 microsatellites will be useful for investigating the genetic diversity and structure from large scale patterns to fine-scale structures in this species.


Sci ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 10
Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Giorgos Mallinis ◽  
Charalampos Georgiadis

Αbstract: To date, countless satellite image fusions have been made, mainly with panchromatic spatial resolution to a multispectral image ratio of 1/4, fewer fusions with lower ratios, and relatively recently fusions with much higher spatial resolution ratios have been published. Apart from this, there is a small number of publications studying the fusion of aerial photographs with satellite images, with the year of image acquisition varying and the dates of acquisition not mentioned. In addition, in these publications, either no quantitative controls are performed on the composite images produced, or the aerial photographs are recent and colorful and only the RGB bands of the satellite images are used for data fusion purposes. The objective of this paper is the study of the addition of multispectral information from satellite images to black and white aerial photographs of the 80s decade (1980–1990) with small difference (just a few days) in their image acquisition date, the same year and season. Quantitative tests are performed in two case studies and the results are encouraging, as the accuracy of the classification of the features and objects of the Earth’s surface is improved and the automatic digital extraction of their form and shape from the archived aerial photographs is now allowed. This opens up a new field of use for the black and white aerial photographs and archived multispectral satellite images of the same period in a variety of applications, such as the temporal changes of cities, forests and archaeological sites.


Author(s):  
Hatem Keshk ◽  
Xu-Cheng Yin

Background: Deep Learning (DL) neural network methods have become a hotspot subject of research in the remote sensing field. Classification of aerial satellite images depends on spectral content, which is a challenging topic in remote sensing. Objective: With the aim to accomplish a high performance and accuracy of Egyptsat-1 satellite image classification, the use of the Convolutional Neural Network (CNN) is raised in this paper because CNN is considered a leading deep learning method. CNN is developed to classify aerial photographs into land cover classes such as urban, vegetation, desert, water bodies, soil, roads, etc. In our work, a comparison between MAXIMUM Likelihood (ML) which represents the traditional supervised classification methods and CNN method is conducted. Conclusion: This research finds that CNN outperforms ML by 9%. The convolutional neural network has better classification result, which reached 92.25% as its average accuracy. Also, the experiments showed that the convolutional neural network is the most satisfactory and effective classification method applied to classify Egyptsat-1 satellite images.


Phytotaxa ◽  
2019 ◽  
Vol 391 (4) ◽  
pp. 269 ◽  
Author(s):  
LIANG MA ◽  
XIN-YAN CHEN ◽  
JIANG-FENG LIU ◽  
SHI-PIN CHEN

Gastrodia Brown (1810: 330) (Orchidaceae, Epidendroideae, Gastrodieae) is composed of approximately 90 species with a broad Old World distribution (Pridgeon et al. 2005, Chen et al. 2009, Cribb et al. 2010, Huang et al. 2015, Hsu et al. 2016, Jin et al. 2017, Aung et al. 2018, Suetsugu 2017, Suetsugu et al. 2018). During a survey of native plants in Fujian Province, an unknown species of Gastrodia was collected in August 2018 from the evergreen broad-leaved forest in Wuyishan National Park. A detailed examination of the specimens with similar species morphologically, G. fontinalis Lin (1987: 129), G. major Averyanov (2006: 21), G. punctata Averyanov (2006: 21) and G. huapingensis Huang, Hu & Liu (2015: 290), and two other species recorded from Fujian, G. elata Blume (1856: 174) and G. wuyishanensis Li & Liu (2007: 354), we confirmed it as a new species.


Koedoe ◽  
2005 ◽  
Vol 48 (2) ◽  
Author(s):  
L.R. Brown ◽  
H. Bezuidenhout

South Africa is well known for its semi-arid lowland areas that have a distinct flora and species composition. Because ecosystems react differently to different management practices, it is important that a description and classification of the vegetation of an area be done. As part of a vegetation survey programme for the newly acquired farms incorporated into the Mountain Zebra National Park, the vegetation of the Ingleside and Welgedacht sections were surveyed following the Braun-Blanquet approach. From a TWINSPAN classification, refined by Braun-Blanquet procedures, 10 shrub and grassland plant communities, which can be grouped into seven major groups, were identified. A classification and description of these communities, as well as a vegetation map are presented. The diagnostic species as well as the prominent and less conspicuous species of the tree, shrub, herb and grass strata are outlined. The area generally comprises lowland communities and higher-lying communities. The lower-lying communities consist mainly of two communities and comprise the largest proportion of the area in hectares. In contrast, the higher-lying communities are more diverse with specific habitats. Using the Ecological Index Method the veld condition and grazing capacity were calculated for each community and the total study area. Large sections of the lowland areas are overgrazed due to previous farming grazing practices while the higher-lying areas that were less accessible to the animals are in a slightly better condition. Overall this has resulted in the area generally being degraded within a high grazing capacity of 30.1 ha/LSU.


2015 ◽  
Vol 7 (3) ◽  
pp. 23-38 ◽  
Author(s):  
Ippei Harada ◽  
Keitarou Hara ◽  
Mizuki Tomita ◽  
Kevin Short ◽  
Jonggeol Park

Abstract Japan, with over 75% forest cover, is one of the most heavily forested countries in the world. Various types of climax forest are distributed according to latitude and altitude. At the same time, human intervention in Japan has historically been intensive, and many forest habitats show the influence of various levels of disturbance. Furthermore, Japanese landscapes are changing rapidly, and a system of efficient monitoring is needed. The aim of this research was to identify major historical trends in Japanese landscape change and to develop a system for identifying and monitoring patterns of landscape change at the national level. To provide a base for comparison, Warmth Index (WI) climatic data was digitalized and utilized to map potential climax vegetation for all of Japan. Extant Land Use Information System (LUIS) data were then modified and digitalized to generate national level Land Use/Land Cover (LU/LC) distribution maps for 1900, 1950 and 1985. In addition, MODIS data for 2001 acquired by the Tokyo University of Information Sciences were utilized for remote LU/LC classification using an unsupervised method on multi-temporal composite data. Eight classification categories were established using the ISODATA (cluster analyses) method; alpine plant communities, evergreen coniferous forest, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed forest, arable land (irrigated rice paddy, non-irrigated, grassland), urban area, river and marsh. The results of the LUIS analyses and MODIS classifications were interpreted in terms of a Landscape Transformation Sere model assuming that under increasing levels of human disturbance the landscape will change through a series of stages. The results showed that overall forest cover in Japan has actually increased over the century covered by the data; from 72.1% in 1900 to 76.9% in 2001. Comparison of the actual vegetation and the potential vegetation as predicted by WI, however, indicated that in many areas the climax vegetation has been replaced by secondary forests such as conifer timber plantations. This trend was especially strong in the warm and mid temperate zones of western Japan. This research also demonstrated that classification of moderate resolution remote sensing data, interpreted within a LTS framework, can be an effective tool for efficient and repeat monitoring of landscape changes at the national level. In the future, the authors plan to continue utilizing this approach to track rapidly occurring changes in Japanese landscapes at the national level.


Sign in / Sign up

Export Citation Format

Share Document