Effects of Elevated CO2and Nitrification Inhibitors on N2O Emissions from a winter wheat cropping system

2016 ◽  
Vol 36 (15) ◽  
Author(s):  
李豫婷 LI Yuting ◽  
林树基 LAM Shu Kee ◽  
韩雪 HAN Xue ◽  
冯永祥 FENG Yongxiang ◽  
林而达 LIN Erda ◽  
...  
2013 ◽  
Vol 10 (4) ◽  
pp. 2427-2437 ◽  
Author(s):  
C. Liu ◽  
K. Wang ◽  
X. Zheng

Abstract. The application of nitrification inhibitors together with ammonium-based fertilizers is proposed as a potent method to decrease nitrous oxide (N2O) emission while promoting crop yield and nitrogen use efficiency in fertilized agricultural fields. To evaluate the effects of nitrification inhibitors, we conducted year-round measurements of N2O fluxes, yield, aboveground biomass, plant carbon and nitrogen contents, soil inorganic nitrogen and dissolved organic carbon contents and the main environmental factors for urea (U), urea &amp;plus; dicyandiamide (DCD) and urea &amp;plus; 3,4-dimethylpyrazol phosphate (DMPP) treatments in a wheat–maize rotation field. The cumulative N2O emissions were calculated to be 4.49 &amp;pm; 0.21, 2.93 &amp;pm; 0.06 and 2.78 &amp;pm; 0.16 kg N ha−1 yr−1 for the U, DCD and DMPP treatments, respectively. Therefore, the DCD and DMPP treatments significantly decreased the annual emissions by 35% and 38%, respectively (p < 0.01). The variations of soil temperature, moisture and inorganic nitrogen content regulated the seasonal fluctuation of N2O emissions. When the emissions presented clearly temporal variations, high-frequency measurements or optimized sampling schedule for intermittent measurements would likely provide more accurate estimations of annual cumulative emission and treatment effect. The application of nitrification inhibitors significantly increased the soil inorganic nitrogen content (p < 0.01); shifted the main soil inorganic nitrogen form from nitrate to ammonium; and tended to increase the dissolved organic carbon content, crop yield, aboveground biomass and nitrogen uptake by aboveground plant. The results demonstrate the roles the nitrification inhibitors play in enhancing yield and nitrogen use efficiency and reducing N2O emission from the wheat–maize cropping system.


2013 ◽  
Vol 10 (1) ◽  
pp. 711-737 ◽  
Author(s):  
C. Liu ◽  
K. Wang ◽  
X. Zheng

Abstract. The application of nitrification inhibitors together with ammonium-based fertilizers is proposed as a potent method to decrease nitrous oxide (N2O) emission while promoting yield and nitrogen use efficiency in fertilized agricultural fields. To evaluate the effects of nitrification inhibitors, we conducted year-round measurements of N2O fluxes, yield, aboveground biomass, plant carbon and nitrogen contents, soil inorganic nitrogen and dissolved organic carbon contents and the main environmental factors for urea (U), urea + dicyandiamide (DCD) and urea + 3,4-dimethylpyrazol-phosphate (DMPP) treatments in a wheat-maize rotation field. The cumulative N2O emissions were calculated to be 4.49 ± 0.21, 2.93 ± 0.06 and 2.78 ± 0.16 kg N ha−1 yr−1 for the U, DCD and DMPP treatments, respectively. Therefore, the DCD and DMPP treatments decreased the annual emissions by 35% and 38%, respectively. The variations of soil temperature, moisture and inorganic nitrogen content regulated the seasonal fluctuation of N2O emissions. When the emissions presented clearly temporal variations, year-round and high-frequency measurements should be adopted to estimate annual cumulative emissions and treatment effects. The application of nitrification inhibitors increased the soil inorganic nitrogen and dissolved organic carbon availability and shifted the main soil inorganic nitrogen form from nitrate to ammonium. The annual yield, aboveground biomass and nitrogen uptake by aboveground plants increased by 8.5–9.1%, 8.6–9.7% and 10.9–13.2%, respectively, for the DCD and DMPP treatments compared with the U treatment. The results demonstrate the roles the nitrification inhibitors play in enhancing yield and nitrogen use efficiency and reducing N2O emission from the wheat-maize cropping system.


2012 ◽  
Vol 55 ◽  
pp. 240-244 ◽  
Author(s):  
Shuping Qin ◽  
Yuying Wang ◽  
Chunsheng Hu ◽  
Oene Oenema ◽  
Xiaoxin Li ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 782 ◽  
Author(s):  
Yuncai Hu ◽  
Manuela P. Gaßner ◽  
Andreas Weber ◽  
Martine Schraml ◽  
Urs Schmidhalter

Urea (U) is the most important nitrogen (N) fertilizer in agriculture worldwide, and as N fertilizer can result in large gaseous losses of NH3 and N2O. Thus, urease inhibitors (UIs) and nitrification inhibitors (NIs) have been coupled with U fertilizers to mitigate NH3 and N2O emissions. However, it is still unclear whether adding NIs and/or UIs to U stimulates other pollutants, while reducing one pollutant. Furthermore, part of the NH3 deposition to earth is converted to N2O, leading to indirect N2O emission. To estimate direct and indirect effect of UIs and NIs on the N2O-N and NH3-N losses from U; therefore, we analyzed multi-year field experiments from the same site during 2004 to 2005 and 2011 to 2013. The field experiments with U fertilization with or without UI (IPAT, N-isopropoxycarbonyl phosphoric acid triamide) and NI (DCD/TZ, Dicyandiamide/1H-1, 2, 4-Triazol) in winter wheat and with calcium ammonium nitrate (CAN) were conducted in southern Germany. Fluxes of NH3 or N2O emissions were determined following each split N fertilization in separate experiments on the same site. Our results showed that U with NIs considerably reduced N2O emissions, and adding UIs decreased NH3 emissions. However, the effect on N2O emissions exerted by (U + UIs) or (U + UIs + NIs) was inconsistent. In contrast to the treatment of (U + UIs + NIs), the addition of NIs alone to U stimulated NH3 emission compared to treatment with U. When 1% indirect N2O emission from NH3 (IPCC emission factor (EF4)) was considered to estimate the indirect N2O emission, total N2O emissions from (U + NIs) were approximately 29% compared to that from U alone and 36% compared to that from (U + UI), indicating that indirect N2O emission from NH3 induced by NIs may be negligible.


2001 ◽  
Vol 81 (4) ◽  
pp. 805-813 ◽  
Author(s):  
R. E. Blackshaw ◽  
F. J. Larney ◽  
C. W. Lindwall ◽  
P. R. Watson ◽  
D. A. Derksen

Development of improved weed manage ment systems requires more knowledge on how various weed species respond to changing agronomic practices. A long-term study was conducted to determine weed population responses to various tillage intensities and crop rotations in a winter wheat (Triticum aestivum L.) dominated cropping system. Weed density and species composition differed with tillage, rotation, year, and date of sampling within years. Weed community dynamics were most affected by year-to-year differences in environmental conditions, followed by crop rotation, and then tillage intensity. Russian thistle (Salsola iberica Sennen & Pau) and kochia [Kochia scoparia (L.) Schrad.] densities increased in years of low rainfall and above average temperatures. Winter annual weeds such as downy brome (Bromus tectorum L.) and flixweed [Descurainia sophia (L.) Webb ex Prantl], as well as the perennial weed dandelion (Taraxacum officinale Weber in Wiggers), increased in years where higher than average rainfall was received in fall or early spring. Continuous winter wheat facilitated a dense downy brome infestation to develop over time. Trifluralin is not efficacious on stinkweed (Thlaspi arvense L.) or Canada thistle [Cirsium arvense (L.) Scop.] and its use in canola resulted in an increase in these species in a winter wheat-canola rotation. Total weed densities were often greater in zero tillage than in either minimum or conventional tillage. Russian thistle, downy brome, kochia, and redroot pigweed (Amaranthus retroflexus L.) were associated with zero tillage while wild buckwheat (Polygonum convolvulus L.), lamb’s-quarters (Chenopodium album L.), flixweed, and wild mustard (Sinapis arvensis L.) were associated with conventional tillage. Perennials such as dandelion and perennial sowthistle (Sonchus arvensis L.) were associated with zero tillage but Canada thistle was associated with conventional tillage. Information will be utilized to implement more effective weed management programs in winter wheat production systems. Key words: Conservation tillage, fallow, multivariate analyses, weed populations, weed shifts, zero tillage


2009 ◽  
Vol 86 (3) ◽  
pp. 301-315 ◽  
Author(s):  
Xiao Qin Dai ◽  
Hong Yan Zhang ◽  
J. H. J. Spiertz ◽  
Jun Yu ◽  
Guang Hui Xie ◽  
...  

Author(s):  
Jesse Muller ◽  
Daniele De Rosa ◽  
Johannes Friedl ◽  
Massimiliano De Antoni Migliorati ◽  
David Rowlings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document