Combining nitrification inhibitors with a reduced N rate maintains yield and reduces N2O emissions in sweet corn

Author(s):  
Jesse Muller ◽  
Daniele De Rosa ◽  
Johannes Friedl ◽  
Massimiliano De Antoni Migliorati ◽  
David Rowlings ◽  
...  
Nitrogen ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 43-57
Author(s):  
Rhys Rebello ◽  
Paul J. Burgess ◽  
Nicholas T. Girkin

Tea (Camellia sinensis L.) is the most widely consumed beverage in the world. It is mostly grown in the tropics with a heavy dependence on mineral nitrogen (N) fertilisers to maintain high yields while minimising the areas under cultivation. However, N is often applied in excess of crop requirements, resulting in substantial adverse environmental impacts. We conducted a systematic literature review, synthesising the findings from 48 studies to assess the impacts of excessive N application on soil health, and identify sustainable, alternative forms of N management. High N applications lead to soil acidification, N leaching to surface and groundwater, and the emission of greenhouse gases including nitrous oxide (N2O). We identified a range of alternative N management practices, the use of organic fertilisers, a mixture of organic and inorganic fertilisers, controlled release fertilisers, nitrification inhibitors and soil amendments including biochar. While many practices result in reduced N loading or mitigate some adverse impacts, major trade-offs include lower yields, and in some instances increased N2O emissions. Practices are also frequently trialled in isolation, meaning there may be a missed opportunity from assessing synergistic effects. Moreover, adoption rates of alternatives are low due to a lack of knowledge amongst farmers, and/or financial barriers. The use of site-specific management practices which incorporate local factors (for example climate, tea variety, irrigation requirements, site slope, and fertiliser type) are therefore recommended to improve sustainable N management practices in the long term.


2018 ◽  
Vol 636 ◽  
pp. 427-436 ◽  
Author(s):  
Jaime Recio ◽  
Antonio Vallejo ◽  
Julia Le-Noë ◽  
Josette Garnier ◽  
Sonia García-Marco ◽  
...  

2021 ◽  
Vol 232 (9) ◽  
Author(s):  
Yafei Guo ◽  
Anjum Anjum ◽  
Ahmad Khan ◽  
Asif Naeem ◽  
Karl H. Mühling

AbstractOwing to their high carbon and nitrogen contents, biogas residues may lead to higher carbon dioxide (CO2) and nitrous oxide (N2O) emissions from soils. Acidification of biogas slurry and application of nitrification inhibitors (NIs) could mitigate the emission of these gases. An incubation experiment was therefore carried out to investigate the effect of NIs, DMPP (3, 4-dimethylpyrazole phosphate), and PIADIN (active ingredients: 3.00–3.25% 1,2,4-triazole and 1.50–1.65% 3-methylpyrazole), on CO2 and N2O emissions from soils fertilized with biogas residues and acidified biogas residues. Biogas residues produced higher ammonium-nitrogen (NH4+-N) and nitrate-nitrogen (NO3−-N) concentrations in soils which resulted in higher emissions of CO2-C and N2O-N than that from acidified biogas residues. Both DMPP and PIADIN significantly decreased the emissions of CO2-C (8.1–55.8%) and N2O-N (87–98%) and maintained lower NH4+-N and NO3−-N concentrations when compared to control (without nitrification inhibitors). However, the DMPP had a higher reduction capability for CO2-C emissions than PIADIN in acidified biogas residue applied soil. In conclusion, the acidification of biogas residues and application of NIs are effect in reducing gaseous emission from biogas residue fertilized soils and thus could improve the fertilizer effectiveness of the residues.


2016 ◽  
Vol 36 (15) ◽  
Author(s):  
李豫婷 LI Yuting ◽  
林树基 LAM Shu Kee ◽  
韩雪 HAN Xue ◽  
冯永祥 FENG Yongxiang ◽  
林而达 LIN Erda ◽  
...  

Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115310
Author(s):  
Zengming Chen ◽  
Ye Li ◽  
Yehong Xu ◽  
Shu Kee Lam ◽  
Longlong Xia ◽  
...  

2008 ◽  
Vol 48 (2) ◽  
pp. 14 ◽  
Author(s):  
C. A. M. de Klein ◽  
R. J. Eckard

Nitrous oxide (N2O) emissions account for ~10% of global greenhouse gas (GHG) emissions, with most of these emissions (~90%) deriving from agricultural practices. Animal agriculture potentially contributes up to 50% of total agricultural N2O emissions. In intensive animal agriculture, high N2O emission rates generally coincide with anaerobic soil conditions and high soil NO3–, primarily from animal urine patches. This paper provides an overview of animal, feed-based and soil or management abatement technologies for ruminant animal agriculture targeted at reducing the size of the soil NO3– pool or improving soil aeration. Direct measurements of N2O emissions from potential animal and feed-based intervention technologies are scarce. However, studies have shown that they have the potential to reduce urinary N excretion by 3–60% and thus reduce associated N2O emissions. Research on the effect of soil and water management interventions is generally further advanced and N2O reduction potentials of up to 90% have been measured in some instances. Of the currently available technologies, nitrification inhibitors, managing animal diets and fertiliser management show the best potential for reducing emissions in the short-term. However, strategies should always be evaluated in a whole-system context, to ensure that reductions in one part of the system do not stimulate higher emissions elsewhere. Current technologies reviewed here could deliver up to 50% reduction from an animal housing system, but only up to 15% from a grazing-based system. However, given that enteric methane emissions form the majority of emissions from grazing systems, a 15% abatement of N2O is likely to translate to a 2–4% decrease in total GHG emissions at a farm scale. Clearly, further research is needed to develop technologies for improving N cycling and reducing N2O emissions from grazing-based animal production systems.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1174 ◽  
Author(s):  
Christina Herr ◽  
Thomas Mannheim ◽  
Torsten Müller ◽  
Reiner Ruser

Cattle slurry injection (INJ) has shown to be an efficient measure to reduce ammonia (NH3) losses from soils but it might also significantly increase nitrous oxide (N2O) emissions, which can dominate the total greenhouse gas (GHG) release in silage maize production (Zea mays L.). Nitrification inhibitors (NIs) are known for their potential to mitigate N2O. Therefore, we tested the effect of NIs added to cattle slurry before INJ on N2O fluxes from a Haplic Luvisol under silage maize in southwest Germany. We determined N2O fluxes at least weekly, with the closed chamber method over two full years. NIs differ in their chemical and physical behavior and we therefore tested a range of commercially available NIs: 3,4-dimethylpyrazole phosphate, 3,4-dimethylpyrazol succinic acid, a mixture of both, nitrapyrin, dicyandiamide, and 1,2,4 triazol and 3-methylpyrazol. Although not significant, INJ treatments with NI showed lower mean annual N2O emissions than the INJ treatment without NI in the 1st year. The emission reduction by NI of 46% in the 2nd year was statistically significant. In both years, we did not find any difference in N2O release, crop yield, or nitrogen removal between the different NI treatments. In the 1st year, which was extraordinary dry and warm, emission factors (EFs) for all INJ treatments were 4 to 8-fold higher than default EF from the IPCC. Even in the 2nd year, only three NI treatments reached EFs within the range provided by the IPCC. Direct N2O accounted for between 81 and 91% of the total GHG emission. Area- and yield-related GHG emission of the broadcast application with subsequent incorporation was in both years in the statistical class with lowest emission. In contrast, INJ with NIs showed similar GHG emissions in only one year, and consequently, incorporation was found to be the optimum management practice for livestock farmers in our study region.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 102 ◽  
Author(s):  
Ximena Huérfano ◽  
Sergio Menéndez ◽  
Matha-Marina Bolaños-Benavides ◽  
Carmen González-Murua ◽  
José-María Estavillo

Grasslands are subject to a wide range of land management practices that influence the exchange of the three main agricultural greenhouse gases (GHGs) that are related to agriculture: carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). Improving nitrogen fertilization management practices through the use of nitrification inhibitors (NIs) can reduce GHGs emissions. We conducted a field experiment at the Colombian Agricultural Research Corporation with four fertilization treatments: urea (typical fertilizer used in this region), ammonium sulfate nitrate (ASN), ASN plus the NI 3,4-dimethylpyrazole phosphate (ASN+DMPP), and an unfertilized control. The highest grassland yields (1956 and 2057 kg DM ha−1, respectively) and apparent fertilizer nitrogen recoveries (34% and 33%, respectively) were generated by the conventional urea fertilizer and ASN+DMPP. Furthermore, the use of ASN+DMPP reduced the N2O emissions that were related to N fertilization to the level of the unfertilized treatment (ca. 1.5 g N2O-N ha−1), with a significant reduction of N-yield-scaled N2O emissions (ca. 20 g N2O-N kg N uptake−1). These results support the application of DMPP as an alternative strategy to increase grassland yield while simultaneously reducing the environmental impact of N fertilization.


2013 ◽  
Vol 10 (4) ◽  
pp. 2427-2437 ◽  
Author(s):  
C. Liu ◽  
K. Wang ◽  
X. Zheng

Abstract. The application of nitrification inhibitors together with ammonium-based fertilizers is proposed as a potent method to decrease nitrous oxide (N2O) emission while promoting crop yield and nitrogen use efficiency in fertilized agricultural fields. To evaluate the effects of nitrification inhibitors, we conducted year-round measurements of N2O fluxes, yield, aboveground biomass, plant carbon and nitrogen contents, soil inorganic nitrogen and dissolved organic carbon contents and the main environmental factors for urea (U), urea &amp;plus; dicyandiamide (DCD) and urea &amp;plus; 3,4-dimethylpyrazol phosphate (DMPP) treatments in a wheat–maize rotation field. The cumulative N2O emissions were calculated to be 4.49 &amp;pm; 0.21, 2.93 &amp;pm; 0.06 and 2.78 &amp;pm; 0.16 kg N ha−1 yr−1 for the U, DCD and DMPP treatments, respectively. Therefore, the DCD and DMPP treatments significantly decreased the annual emissions by 35% and 38%, respectively (p < 0.01). The variations of soil temperature, moisture and inorganic nitrogen content regulated the seasonal fluctuation of N2O emissions. When the emissions presented clearly temporal variations, high-frequency measurements or optimized sampling schedule for intermittent measurements would likely provide more accurate estimations of annual cumulative emission and treatment effect. The application of nitrification inhibitors significantly increased the soil inorganic nitrogen content (p < 0.01); shifted the main soil inorganic nitrogen form from nitrate to ammonium; and tended to increase the dissolved organic carbon content, crop yield, aboveground biomass and nitrogen uptake by aboveground plant. The results demonstrate the roles the nitrification inhibitors play in enhancing yield and nitrogen use efficiency and reducing N2O emission from the wheat–maize cropping system.


Sign in / Sign up

Export Citation Format

Share Document