Crop response of aerobic rice and winter wheat to nitrogen, phosphorus and potassium in a double cropping system

2009 ◽  
Vol 86 (3) ◽  
pp. 301-315 ◽  
Author(s):  
Xiao Qin Dai ◽  
Hong Yan Zhang ◽  
J. H. J. Spiertz ◽  
Jun Yu ◽  
Guang Hui Xie ◽  
...  
Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 58 ◽  
Author(s):  
P. Jiao ◽  
D. Xu ◽  
S. Wang ◽  
Y. Wang ◽  
K. Liu ◽  
...  

Reducing nitrogen (N) loss from agricultural soils as surface runoff is essential to prevent surface water contamination. The objective of 3-year study, 2007–09, was to evaluate surface runoff and N loss from different cropping systems. There were four treatments, including one single-crop cropping system with winter wheat (Triticum aestivum L.) followed by summer fallow (wheat/fallow), and three double-cropping systems: winter wheat/corn (Zea mays L.), wheat/cotton (Gossypium hirsutum L.), and wheat/soybean (Glycine max L. Merrill). The wheat/fallow received no fertiliser in the summer fallow period. The four cropping systems were randomly assigned to 12 plots of 5 m by 2 m on a silty clay soil. Lower runoff was found in the three double-cropping systems than the wheat/fallow, with the lowest runoff from the wheat/soybean. The three double-cropping systems also substantially reduced losses of ammonium-N (NH4+-N), nitrate-N (NO3–-N), dissolved N (DN), and total N (TN) compared with the wheat/fallow. Among the three double-cropping systems, the highest losses of NO3–-N, DN, and TN were from the wheat/cotton, and the lowest losses were from the wheat/soybean. However, the wheat/soybean increased NO3–-N and DN concentrations compared with wheat/fallow. The losses in peak events accounted for >64% for NH4+-N, 58% for NO3–-N, and 41% for DN of the total losses occurring during the 3-year experimental period, suggesting that peak N-loss events should be focussed on for the control of N loss as surface runoff from agricultural fields.


2012 ◽  
Vol 76 (1) ◽  
pp. 286-297 ◽  
Author(s):  
Shaojun Qiu ◽  
Xiaotang Ju ◽  
Xing Lu ◽  
Ling Li ◽  
Joachim Ingwersen ◽  
...  

2019 ◽  
Vol 65 (2) ◽  
Author(s):  
Vera RAJICIC ◽  
Jelena MILIVOJEVIC ◽  
Vera POPOVIC ◽  
Snezana BRANKOVIC ◽  
Nenad DJURIC ◽  
...  

2019 ◽  
Vol 45 (4) ◽  
pp. 589 ◽  
Author(s):  
Bao-Yuan ZHOU ◽  
Wei MA ◽  
Xue-Fang SUN ◽  
Zai-Song DING ◽  
Cong-Feng LI ◽  
...  

2001 ◽  
Vol 81 (2) ◽  
pp. 273-276 ◽  
Author(s):  
Joanne R. Thiessen Martens ◽  
Martin H. Entz

Long-term weather data for 21 sites across Manitoba, Saskatchewan and Alberta were analyzed to evaluate the availability of late-season heat and water resources between time of winter wheat maturity and freeze-up. Thermal time during this period ranged from 159 to 754 growing degree days; precipitation ranged from 42 to 152 mm. Southern Manitoba appears to be best suited to relay and double cropping. Southern Saskatchewan receives significant thermal energy; however, lack of precipitation may limit late season plant growth. Key words: Legumes, no-till, cropping system intensity


2013 ◽  
Vol 12 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Ming-wei DU ◽  
Xiao-ming REN ◽  
Xiao-li TIAN ◽  
Liu-sheng DUAN ◽  
Ming-cai ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document