Land use change and its influence on soil organic carbon and total nitrogen in a typical peri-urban watershed of the Yangtze River delta

2018 ◽  
Vol 38 (20) ◽  
Author(s):  
李守娟 LI Shoujuan ◽  
杨磊 YANG Lei ◽  
陈利顶 CHEN Liding ◽  
赵方凯 ZHAO Fangkai ◽  
孙龙 SUN Long
Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 804
Author(s):  
Bo Niu ◽  
Dazhuan Ge ◽  
Rui Yan ◽  
Yingyi Ma ◽  
Dongqi Sun ◽  
...  

In recent years, the impact of land-use systems on global climate change has become increasingly significant, and land-use change has become a hot issue of concern to academics, both within China and abroad. Urbanization, as an important socioeconomic factor, plays a vital role in promoting land-use transition, which also shows a significant spatial dependence on urbanization. This paper constructs a theoretical framework for the interaction relationship between urbanization and land-use transition, taking the Yangtze River Delta as an example, and measures the level of urbanization from the perspective of population urbanization, economic urbanization and social urbanization, while also evaluating the level of land-use morphologies from the perspective of dominant and recessive morphologies of land-use. We construct a PVAR model and coupled coordination model based on the calculated indexes for empirical analysis. The results show that the relationship between urbanization and land-use transition is not a simple linear relationship, but tends to be complex with the process of urbanization, and reasonable urbanization and land-use morphologies will promote further benign coupling in the system. By analyzing the interaction relationship between urbanization and land-use transition, this study enriches the study of land-use change and provides new pathways for thinking about how to promote high-quality urbanization.


2016 ◽  
Vol 36 (15) ◽  
Author(s):  
王玺洋 WANG Xiyang ◽  
于东升 YU Dongsheng ◽  
廖丹 LIAO Dan ◽  
潘剑君 PAN Jianjun ◽  
黄标 HUANG Biao ◽  
...  

Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Jinfeng Ma ◽  
Weifeng Li ◽  
Zhao Wang ◽  
Liang He ◽  
Lijian Han

Although urban agglomerations are vital sites for national economic development, comprehensive multidimensional investigations of their performance are lacking. Accordingly, we examined land use efficiency from multiple perspectives in two of the earliest developed and most advanced urban agglomerations in China, the Beijing–Tianjin–Hebei (BTH) region and the Yangtze River Delta (YRD), using different metrics, including trans-regional drivers of the spatial allocation of construction land. We found that: (1) The land use efficiency of urban agglomerations was context dependent. Whereas it was higher in the Beijing–Tianjin–Hebei region for population density per unit area of construction land than in the Yangtze River Delta region, the opposite was true for gross domestic production. Thus, a single aspect did not fully reflect the land use efficiency of urban agglomerations. (2) The land use efficiency of the two urban agglomerations was also scale dependent, and in the Yangtze River Delta region, the use of multiple metrics induced variations between aggregate and local measures. Median values for the land use efficiency of cities within an urban agglomeration were the most representative for comparative purposes. (3) The drivers of the spatial allocation of construction land were trans-regional. At the regional scale, most topographical factors were restrictive. Major regional transport networks significantly influenced the occurrence of construction land near them. Dominant cities and urban areas within each city exerted remote effects on non-dominant cities and rural areas. In principle, the median value can be considered a promising metric for assessing an urban agglomeration’s performance. We suggest that stringent management of land use in areas located along regional rail tracks/roadways may promote sustainable land use.


2020 ◽  
Vol 20 (17) ◽  
pp. 10193-10210
Author(s):  
Dong Chen ◽  
Yu Zhao ◽  
Jie Zhang ◽  
Huan Yu ◽  
Xingna Yu

Abstract. Through online observation and offline chemistry analysis of samples at suburban, urban and industrial sites (NJU, PAES and NUIST, respectively) in Nanjing, a typical polluted city in the Yangtze River Delta, we optimized the aerosol light scattering estimation method, identified its influencing factors and quantified the contributions of emission sources to aerosol scattering. The daily average concentration of PM2.5 during the sampling period (November 2015–March 2017) was 163.1±13.6 µg m−3 for the heavily polluted period, 3.8 and 1.6 times those for the clean (47.9±15.8 µg m−3) and lightly polluted (102.1±16.4 µg m−3) periods, respectively. The largest increase in PM concentration and its major chemical components was found at the size range of 0.56–1.0 µm for the heavily polluted period, and the contributions of nitrate and sulfate were the greatest in the 0.56–1.0 µm fraction (19.4 %–39.7 % and 18.1 %–34.7 %, respectively) for all the three periods. The results indicated that the large growth of nitrate and sulfate was one of the major reasons for the polluted periods. Based on measurements at the three sites, the US Interagency Monitoring of Protected Visual Environments (IMPROVE) algorithm was optimized to evaluate aerosol scattering in eastern China. The light absorption capacity of organic carbon (OC) was estimated to account for over half of the methanol-soluble organic carbon (MSOC) at NJU and PAES, whereas the fraction was lower at NUIST. Based on the Mie theory, we found that the high relative humidity (RH) could largely enhance the light scattering effect of accumulation particles, but it had few effects on the mixing state of particles. The scattering coefficients of particles within the 0.56–1.0 µm range contributed the most to the total scattering (28 %–69 %). The mass scattering efficiency (MSE) of sulfate and nitrate increased with the elevated pollution level, whereas a low MSE of organic matter (OM) was found for the heavily polluted period, probably because a proportion of OM had only a light absorption property. A coupled model of positive matrix factorization (PMF) and the Mie theory was developed and applied for the source apportionment of aerosol light scattering. Coal burning, industry and vehicles were identified as the major sources of the reduced visibility in Nanjing, with an estimated collective contribution at 64 %–70 %. The comparison between the clean and polluted period suggested that the increased primary particle emissions from vehicles and industry were the major causes of the visibility degradation in urban and industrial regions, respectively. In addition, secondary aerosols were a great contributor to the reduced visibility.


Sign in / Sign up

Export Citation Format

Share Document