scholarly journals Niche of dominant species in arbor layer of evergreen deciduous broad-leaved mixed forest in karst hills of Guilin, southwestern China

2021 ◽  
Vol 41 (20) ◽  
Author(s):  
肖艳梅,解婧媛,姚义鹏,梁士楚,高丽娜,张惠,莫适祯 XIAO Yanmei
Forests ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 263 ◽  
Author(s):  
Libin Liu ◽  
Jian Ni ◽  
Qiaolian Zhong ◽  
Gang Hu ◽  
Zhonghua Zhang

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 303 ◽  
Author(s):  
Dan Zhao ◽  
Yong Pang ◽  
Lijuan Liu ◽  
Zengyuan Li

This paper proposes a method to classify individual tree species groups based on individual tree segmentation and crown-level spectrum extraction (“crown-based ITC” for abbr.) in a natural mixed forest of Northeast China, and compares with the pixel-based classification and segment summarization results (“pixel-based ITC” for abbr.). Tree species is a basic factor in forest management, and it is traditionally identified by field survey. This paper aims to explore the potential of individual tree classification in a natural, needle-leaved and broadleaved mixed forest. First, individual trees were isolated, and the spectra of individual trees were then extracted. The support vector machine (SVM) and spectrum angle mapper (SAM) classifiers were applied to classify the trees species. The pixel-based classification results from hyperspectral data and LiDAR derived individual tree isolation were compared. The results showed that the crown-based ITC classified broadleaved trees better than pixel-based ITC, while the classes distribution of the crown-based ITC was closer to the survey data. This indicated that crown-based ITC performed better than pixel-based ITC. Crown-based ITC efficiently identified the classes of the dominant and sub-dominant species. Regardless of whether SVM or SAM was used, the identification consistency relative to the field observations for the class of the dominant species was greater than 90%. In contrast, the consistencies of the classes of the sub-dominant species were approximately 60%, and the overall consistency of both the SVM and SAM was greater than 70%.


Silva Fennica ◽  
2016 ◽  
Vol 50 (3) ◽  
Author(s):  
Libin Liu ◽  
Yangyang Wu ◽  
Gang Hu ◽  
Zhonghua Zhang ◽  
Anyun Cheng ◽  
...  

2014 ◽  
Vol 59 (4) ◽  
pp. 495-502 ◽  
Author(s):  
Fei Yu ◽  
Xiaoxiao Shi ◽  
Dexiang Wang ◽  
Tao Wang ◽  
Xianfeng Yi ◽  
...  

2017 ◽  
Vol 23 (1) ◽  
Author(s):  
SHELLEY ACHARYA ◽  
ADITI DUTTA

The studies were mostly concentrated in Nine forest ranges of the WLS including the core areas. The soil of this region mostly is dry, red and with iron and silica content. Though the soil mites are prevalent in moist humid condition, we got a diversed population of 20 different species under 14 genera which is less than average probably due to the soil condition. Protoribates magnus is the dominant species in this study. The species with larger ranges were Scheloribates curvialatus.


2020 ◽  
Vol 81 ◽  
pp. 1-14
Author(s):  
M Keyimu ◽  
Z Li ◽  
Y Zhao ◽  
Y Dong ◽  
B Fu ◽  
...  

Historical temperature reconstructions at high altitudes are still insufficient in southwestern China, which is considered one of the most sensitive areas to climate change in the world. Here we developed a tree ring-width chronology of Faxon fir Abies fargesii var. faxoniana at the upper timber line on Zhegu Mountain, Miyaluo Scenic Area, western Sichuan, China. The climate-tree growth relationship analysis indicated temperature as the dominant regulator on radial tree growth in this region. The reconstruction of aggregated maximum temperature (TMX) of autumn and winter for the period 1856-2016 was achieved with a linear regression model that accounted for 43.6% of the actual variability in the common time series (1954-2016). The reconstruction identified 4 warm periods and 3 cold periods. Similarities of warm and cold periods with previously published reconstructions from nearby sites indicated the reliability of our reconstruction. The significant positive correlation between TMX reconstruction and the Asian-Pacific Oscillation index and the Atlantic Multi-decadal Oscillation index suggested a linkage between large-scale climate circulations and the thermal variability at a multi-decadal scale on the western Sichuan Plateau. We also found that solar activity exerted a strong influence on decadal temperature variability in this region. The cold periods were matched well with historical large volcanic eruptions. Our results strengthen the historical climatic information in southwestern China and contribute to further understanding the regional thermal variability as well as its driving mechanism.


Sign in / Sign up

Export Citation Format

Share Document