scholarly journals Study of coastal zone ecosystem restoration in the context of carbon storage change: a case of Dongying City

2021 ◽  
Vol 41 (20) ◽  
Author(s):  
隋玉正,孙大鹏,李淑娟,徐永臣,吴晶晶 SUI Yuzheng
Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Imranul Islam ◽  
Shenghui Cui ◽  
Muhammad Ziaul Hoque ◽  
Hasan Muhammad Abdullah ◽  
Kaniz Fatima Tonny ◽  
...  

Tree outside forest (TOF) has immense potential in economic and environmental development by increasing the amount of tree vegetation in and around rural settlements. It is an important source of carbon stocks and a critical option for climate change regulation, especially in land-scarce, densely populated developing countries such as Bangladesh. Spatio-temporal changes of TOF in the eastern coastal zone of Bangladesh were analyzed and mapped over 1988–2018, using Landsat land use land cover (LULC) maps and associated ecosystem carbon storage change by linking the InVEST carbon model. Landsat TM and OLI-TIRS data were classified through the Maximum Likelihood Classifier (MLC) algorithm using Semi-Automated Classification (SAC). In the InVEST model, aboveground, belowground, dead organic matter, and soil carbon densities of different LULC types were used. The findings revealed that the studied landscapes have differential features and changing trends in LULC where TOF, mangrove forest, built-up land, and salt-aquaculture land have increased due to the loss of agricultural land, mudflats, water bodies, and hill vegetation. Among different land biomes, TOF experienced the largest increase (1453.9 km2), and it also increased carbon storage by 9.01 Tg C. However, agricultural land and hill vegetation decreased rapidly by 1285.8 km2 and 365.7 km2 and reduced carbon storage by 3.09 Tg C and 4.89 Tg C, respectively. The total regional carbon storage increased by 1.27 Tg C during 1988–2018. In addition to anthropogenic drivers, land erosion and accretion were observed to significantly alter LULC and regional carbon storage, necessitating effective river channel and coastal embankment management to minimize food and environmental security tradeoff in the studied landscape.


2021 ◽  
Vol 130 ◽  
pp. 107954
Author(s):  
Muhammad Ziaul Hoque ◽  
Shenghui Cui ◽  
Imranul Islam ◽  
Lilai Xu ◽  
Shengping Ding

2019 ◽  
Vol 447 (1-2) ◽  
pp. 365-378 ◽  
Author(s):  
Hannu Nykänen ◽  
Antti J. Rissanen ◽  
Jukka Turunen ◽  
Teemu Tahvanainen ◽  
Heikki Simola

Abstract Background and aims In forestry-drained peatlands, drying leads to changes in C cycling which could affect peat δ13C. Furthermore, the δ13C profile of the entire peat column may reveal effects of earlier climatic periods. Methods We measured peat δ13C and C inventories in adjacent peat profiles, two collected from undrained and two from the drained side of a bog that was partially ditch-drained 37 years earlier. The cores were sliced into 10-cm subsamples for analyses; matching of the profiles based on surface levelling, peat stratigraphic correlation and a horizontal ash layer found in both profiles. Results Surface subsidence of 30 cm was observed in the dried site and the uppermost 160 cm in the undrained site contained an excess of 5.9 kg m−2 of C compared with the corresponding strata of the ditch-drained site. The δ13C values increased but markedly only in the thin surface layer of the drained site, indicating low δ13C of the missing C (ca. –30‰). In the deeper strata, dating to Mid-Holocene, high dry bulk density, C%, N%, humification index and low C/N ratio were connected to low δ13C of peat. Conclusions Drainage of 37 years increased δ13C values in the upper peat profile of the drained bog and led to the selective loss of 13C depleted C. Results indicate that C balance studies can be aided by C isotope analyses. Low δ13C values in the peat profile indicate the existence of a wet fen stage during the moist and warm period during Mid-Holocene.


Sign in / Sign up

Export Citation Format

Share Document