scholarly journals Influence of Site Conditions, Shelter Objects, and Ectomycorrhizal Inoculation on the Early Survival of Whitebark Pine Seedlings Planted in Waterton Lakes National Park

2014 ◽  
Vol 60 (3) ◽  
pp. 603-612 ◽  
Author(s):  
Erin R. Lonergan ◽  
Cathy L. Cripps ◽  
Cyndi M. Smith
Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 477 ◽  
Author(s):  
Cathy Cripps ◽  
Genoa Alger ◽  
Robert Sissons

Designer niches in which environmental variables are controlled are useful in forest restoration to enhance survival of planted tree seedlings. Here, we evaluate particular manipulated habitats, on site variables, and pre-seedling conditions hypothesized to improve the survival rate of whitebark pine (Pinus albicaulis) seedlings out-planted in Waterton Lakes National Park. The tree species is in peril due to blister rust and mountain pine beetle infestations in its range; and is a restoration priority in Waterton Lakes because populations in the park are highly infected with blister rust (up to 90%). At Summit Lake, 21 plots were set up and half of each was terra-torched; 1000 seedlings were planted in clusters of three, under four conditions: on burned areas in burned beargrass mats, in burned areas where beargrass mats were not present, in unburned areas where beargrass was present, and in unburned areas without beargrass. This study reports data for the seventh year after planting, and overall, survival was 53% for individual seedlings and at least one seedling survived in 60.8% of clusters. Planting in burned areas increased cluster survival (by 34.3%, p ˂ 0.0001) and planting near microsites increased cluster survival (by 19.3%, p ˂ 0.0001); the type of microsite did not make a difference. Planting in beargrass mats decreased survival, but not significantly (8.9%, p = 0.11) and this was true for burns, not unburned areas. Inoculation with native ectomycorrhizal fungi did not enhance survival most likely because controls on lightly terra-torched and unburned areas had access to local native fungi. This is the first study to report statistics on the planting of seedlings in clusters; the results need to be compared with studies where seedlings are planted individually.


Author(s):  
Kendra McLauchlan ◽  
Kyleen Kelly

One of the keystone tree species in subalpine forests of the western United States – whitebark pine (Pinus albicaulis, hereafter whitebark pine) – is experiencing a significant mortality event (Millar et al. 2012). Whitebark pine occupies a relatively restricted range in the high-elevation ecosystems in the northern Rockies and its future is uncertain. The current decline of whitebark pine populations has been attributed to pine beetle infestations, blister rust infections, anthropogenic fire suppression, and climate change (Millar et al. 2012). Despite the knowledge that whitebark pine is severely threatened by multiple stressors, little is known about the historic capacity of this species to handle these stressors. More specifically, it is unknown how whitebark pine has dealt with past climatic variability, particularly variation in the type of precipitation (rain vs. snow) available for soil moisture, and how differences in quantity of precipitation have influenced the establishment and growth of modern stands. We propose to study the past responses of whitebark pine to paleoclimatic conditions, which would be useful to park ecologists in developing new conservation and regeneration plans to prevent the extinction of this already severely threatened high-elevation resource. The purpose of this study is to determine in great temporal and spatial detail the demographics of the current stand of whitebark pine trees in the watershed surrounding an unnamed, high-altitude pond (known informally as Whitebark Pine Moraine Pond) located approximately 3.06 miles NW of Jenny Lake in Grand Teton National Park (GTNP). The main objectives of this study were: 1.) To obtain the precise GPS locations of the current stand of whitebark pine trees in the watershed to generate a GIS map detailing their locations. 2.) To obtain increment cores of a subset of the trees in the watershed to estimate age and date of establishment for the current stand of whitebark pines, with particular attention to fire history. 3.) To analyze ring widths from core samples to identify climatic indicators that may influence the regeneration and survival of whitebark pine.


Author(s):  
William Romme ◽  
James Walsh

Whitebark pine (Pinus albicaulis) is a keystone species of upper subalpine ecosystems (Tomback et al. 2001), and is especially important in the high-elevation ecosystems of the northern Rocky Mountains (Arno and Hoff 1989). Its seeds are an essential food source for the endangered grizzly bear (Ursus arctos horribilis), particularly in the autumn, prior to winter denning (Mattson and Jonkel 1990, Mattson and Reinhart 1990, Mattson et al. 1992). In the Greater Yellowstone Ecosystem (GYE), biologists have concluded that the fate of grizzlies is intrinsically linked to the health of the whitebark pine communities found in and around Yellowstone National Park (YNP) (Mattson and Merrill 2002). Over the past century, however, whitebark pine has severely declined throughout much of its range as a result of an introduced fungus, white pine blister rust (Cronartium ribicola) (Hoff and Hagle 1990, Smith and Hoffman 2000, McDonald and Hoff 2001), native pine beetle (Dendroctonus ponderosae) infestations (Bartos and Gibson 1990, Kendall and Keane 2001), and, perhaps in some locations, successional replacement related to fire exclusion and fire suppression (Amo 2001). The most common historical whitebark pine ftre regimes are "stand-replacement", and "mixed­ severity" regimes (Morgan et al. 1994, Arno 2000, Arno and Allison-Bunnell2002). In the GYE, mixed-severity ftre regimes have been documented in whitebark pine forests in the Shoshone National forest NW of Cody, WY (Morgan and Bunting 1990), and in NE Yellowstone National Park (Barrett 1994). In Western Montana and Idaho, mixed fire regimes have been documented in whitebark pine communities in the Bob Marshall Wilderness (Keane et al. 1994), Selway-Bitterroot Wilderness (Brown et al. 1994), and the West Bighole Range (Murray et al.1998). Mattson and Reinhart (1990) found a stand­replacing fire regime on the Mount Washburn Massif, within Yellowstone National Park.


2021 ◽  
Vol 135 (1) ◽  
pp. 61-67
Author(s):  
David Hamer

Seeds of Whitebark Pine (Pinus albicaulis) are a major food for Grizzly Bears (Ursus arctos) in the Yellowstone ecosystem. In Canada, Grizzly Bears are known to eat Whitebark Pine seeds, but little additional information, such as the extent of such use and habitat characteristics of feeding sites, is available. Because Grizzly Bears almost always obtain Whitebark Pine seeds by excavating cones from persistent caching sites (middens) made by Red Squirrels (Tamiasciurus hudsonicus), it is possible to infer Whitebark Pine feeding when bears are located near excavated middens in Whitebark Pine stands. During 2013–2018, I conducted a retrospective study in Banff National Park using data from 23 Grizzly Bears equipped by Parks Canada staff with global positioning system (GPS) collars. My objectives were to use GPS fixes to determine the percentage of these bears that had been located in close proximity to excavated middens containing Whitebark Pine seeds and to describe the habitat at these excavated middens. I linked 15 bears (65%) to excavated middens and, by inference, consumption of Whitebark Pine seeds. Excavated middens occurred on high-elevation (mean 2103 ± 101 [SD] m), steep (mean 26° ± 8°) slopes facing mostly (96%) north through west (0–270°). Use of Whitebark Pine seeds by at least 65% of the 23 studied Grizzly Bears suggests that conservation of Whitebark Pine in Banff National Park would concomitantly benefit the at-risk population of Grizzly Bears.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 267
Author(s):  
Lance Vickers ◽  
James Houser ◽  
James Rooni ◽  
James Guldin

The ponderosa pine forests in the Davis Mountains of western Texas recently experienced a major mortality event caused, in part, by an extended regional drought that predisposed trees and stands to mortality from both western pine beetle and wildfires. The loss of many overstory pines and the scarcity of natural ponderosa pine regeneration pose a considerable challenge to restoration. A commissioned study investigated artificial regeneration using containerized ponderosa pine seedlings with multiple planting seasons and vegetation management alternatives. Early survival was statistically greater for dormant season plantings than monsoon season plantings. Vegetation management treatments influenced early growth, survival, and herbivory rates. Physical weed control, which consisted of fibrous weed mats around the base of planted seedlings, showed early advantages over some vegetation management treatments in growth, survival and herbivory deterrence, but all vegetation management treatments had similar survival and herbivory results after 2.5 years. Early survival was poor in all treatments, mainly due to herbivory, which was identified as the principal short-term obstacle to artificial regeneration of ponderosa pine in the Davis Mountains. The larger question regarding feasibility of recovery in this isolated population, particularly if local climatic conditions become increasingly unfavorable, remains.


Sign in / Sign up

Export Citation Format

Share Document