scholarly journals Taxonomic revision of Australian Amobia Robineau-Desvoidy, 1830 (Sarcophagidae: Miltogramminae): integrating morphology and genetics finds a new species and tackles old problems

2020 ◽  
Vol 722 ◽  
pp. 75-96 ◽  
Author(s):  
Nikolas P. Johnston ◽  
James F. Wallman ◽  
Mark Dowton ◽  
Krzysztof Szpila ◽  
Thomas Pape

A taxonomic revision of the Australian species of Amobia Robineau-Desvoidy, 1830 (Diptera: Sarcophagidae: Miltogramminae) is completed using an integrated approach combining four molecular loci (three mitochondrial, COI, ND4 and CYTB; one nuclear, EF1α) and morphological data. A new species, Amobia (s. str.) serpenta sp. nov., endemic to Australia, is described, and Amobia auriceps (Baranov, 1935) and Amobia burnsi (Malloch, 1930) are re-described. Molecular data are used to reconstruct inter-specific and generic relationships and support morphological species hypotheses. Phylogenetic analysis places all three Australian Amobia species together with Amobia signata (Meigen, 1824) (a Palaearctic species) in a single clade sister to Senotainia Macquart, 1846 (in part), which is in agreement with previous phylogenetic studies of the Miltogramminae. In addition to the description of species and molecular phylogenetics, general host associations for the Australian species of Amobia are discussed and evidence for the synonymisation of A. pelopei (Rondani, 1859) and A. auriceps is refuted.

2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Nikolas P Johnston ◽  
James F Wallman ◽  
Thomas Pape

Abstract A taxonomic revision of all Australian species of Metopia Meigen (Sarcophagidae: Miltogramminae) is completed using an integrated approach combining molecular and morphological data. Metopia nudibasis (Malloch) is redescribed as a species complex and a new endemic Australian species, Metopia sputnik sp. n., is described. Evidence is presented that Metopia sauteri (Townsend) is absent from Australia and this species is therefore removed from the known Australian fauna. Molecular phylogenetics is used to reconstruct interspecific and generic relationships and support morphology-based species hypotheses. Phylogenetic analysis splits Metopia Meigen into two clades, separated by Aenigmetopia Malloch, rendering the former genus nonmonophyletic. The implications of this are discussed.


Zootaxa ◽  
2021 ◽  
Vol 5043 (1) ◽  
pp. 1-104
Author(s):  
NIKOLAS P. JOHNSTON ◽  
JAMES F. WALLMAN ◽  
KRZYSZTOF SZPILA ◽  
THOMAS PAPE

Protomiltogramma Townsend is the largest and most diverse genus of miltogrammine flesh flies in Australia. However, no comprehensive taxonomic work had been completed on the Australian members of this genus in almost a century. This study presents the first taxonomic revision of all Australian species of Protomiltogramma (Sarcophagidae: Miltogramminae), completed using an integrative approach combining molecular and morphological data. Eight new species endemic to Australia are described: P. dalbiensis sp. n., P. grandis sp. n., P. incana sp. n., P. kapnos sp. n., P. nigrisensa sp. n., P. popularis sp. n., P. rubra sp. n. and P. subtilis sp. n. In addition, P. australis Malloch, 1930 is synonymised with P. cincta Townsend, 1916, syn. n. and P. mallochi Verves, 1987 is synonymised with P. laticeps Malloch, 1930, syn. n. Molecular phylogenetics is used to place the Australian Protomiltogramma among the miltogrammine genera of the world.  


Zootaxa ◽  
2010 ◽  
Vol 2566 (1) ◽  
pp. 49 ◽  
Author(s):  
ARNAUD FAILLE ◽  
CHARLES BOURDEAU ◽  
JAVIER FRESNEDA

A new trechine species Aphaenops parvulus sp. n. (Carabidae, Trechini) is described from Esjamundo cave in the Pyrenees of Huesca, Spain. The new species belongs to the subgenus Aphaenops (sensu stricto), but differs from its closest congeners by the small size—it is the smallest species of the group—and characters of the aedeagus. Molecular data based on fragments of a mitochondrial (COI) and a nuclear (LSU) genes recognised Aphaenops parvulus sp. n. as a sister taxon to A. eskualduna Coiffait. Aphaenops eskualduna is reported from Spain with precision for the first time.


Zootaxa ◽  
2011 ◽  
Vol 2902 (1) ◽  
pp. 1 ◽  
Author(s):  
RENEE A. CATULLO ◽  
PAUL DOUGHTY ◽  
J. DALE ROBERTS ◽  
J. SCOTT KEOGH

We generated a multi-locus phylogeny to test monophyly and distributional limits in Australian toadlets of the genus Uperoleia from the western arid zone of Australia. The molecular data were used in combination with a detailed assessment of morphological variation and some data on call structure to complete a taxonomic revision of the species that occur in this region. Our work reveals the existence of not two but five species in the region. Uperoleia russelli is restricted to the Carnarvon and Gascoyne Regions south of the Pilbara. Uperoleia micromeles is distributed from the Tanami Desert through the Great Sandy Desert and along the northern edge of the Pilbara. Uperoleia talpa was previously believed to be a Fitzroyland region endemic but it is further distributed along Dampierland and into the Roebourne Plain. Uperoleia glandulosa is a larger species than previously described as well as a greater habitat generalist, inhabiting the rocky Pilbara region and the sandy region around Port Hedland. We also describe a new species, U. saxatilis sp. nov., endemic to the Pilbara craton.


Mycoscience ◽  
2012 ◽  
Vol 53 (6) ◽  
pp. 433-445 ◽  
Author(s):  
Tetsuhiro Matsuzawa ◽  
Reiko Tanaka ◽  
Yoshikazu Horie ◽  
Yan Hui ◽  
Paride Abliz ◽  
...  

Zootaxa ◽  
2020 ◽  
Vol 4896 (1) ◽  
pp. 85-95
Author(s):  
ROMAN V. YAKOVLEV ◽  
NAZAR A. SHAPOVAL ◽  
VADIM V. IVONIN ◽  
SVYATOSLAV A. KNYAZEV ◽  
GALINA N. KUFTINA ◽  
...  

We described a new cossid species, Dyspessa ulgen sp. nov. from the Tarbagatai and Altai Mountains and compared it to other taxa of Dyspessa reported from the region (D. tristis, D. saldaitisi, D. saissanica), as well as to morphologically similar D. ulula. The new species is most closely related to D. ulula but differs from the latter in the characteristics of the male genitalia, wing pattern, and molecular data (a 658 bp fragment of the mitochondrial COI gene). 


2021 ◽  
Author(s):  
◽  
Phil J. Sirvid

<p>The New Zealand Thomisidae (crab spiders) are represented in New Zealand by two subfamilies (Stephanopinae and Thomisinae) and were used as a model group to test two competing theories on the origins of the New Zealand spider fauna. The New Zealand thomisids are also given their first full taxonomic revision. The two origin models essentially represent species radiations following recent dispersal or ancient vicariance events. Modern distribution data suggested that the stephanopines are poor dispersers and may provide evidence demonstrating a long period of separation from Australia; while in contrast, thomisines are known to be excellent dispersers. Maximum Likelihood and Bayesian analyses of cytochrome c suboxidase subunit I (COI), 28S ribosomal RNA (28S), histone H3 (H3), NADH dehyrogenase 1 (ND1) data and a combined genetic dataset was undertaken. Results indicate New Zealand stephanopines and thomisines form distinct endemic groups separate from sampled Australian species and appear to have separated from them around 5-6 million years ago. Additionally, genetic data from this study showed i) colour variations are not indicative of cryptic species; ii) previously described species are genetically distinct; iii) several suspected new species are also genetically distinct; iv) the relatively recent establishment of two Australian stephanopines and the occurrence of similar COI haplotypes in disjunct locations suggest that the dispersal ability of stephanopines is greater than previously thought and that radiation following colonization from Australia is a plausible explanation for the current diversity of the New Zealand thomisid biota. The taxonomic revision raises the number of described species from eight to eleven based on a combination of morphological and genetic data. In the stephanopines, Bryantymella Gen. nov. is erected to contain the type species Bryantymella angularis (Urquhart, 1885) comb. nov. as well as B. angulata (Urquhart, 1885) comb. nov., B. thorini sp. nov. and B. brevirostris sp. nov. Two Australian species, Sidymella longipes (Koch, 1874) and S. trapezia (Koch, 1874), are also recorded for New Zealand. Sidymella benhami (Hogg, 1910) is considered to be a junior synonym of Bryantymella angulata (Urquhart, 1885). In the thomisines, all species are now included in the previously monotypic genus Cymbachina Bryant, 1933. The genus now encompasses the type species C. albobrunnea (Urquhart, 1893), C. ambara (Urquhart, 1885) comb. nov., C. albolimbata (L. Koch, 1893) comb. nov., C. sphaeroides (Urquhart, 1885) comb. nov. and D. urquharti sp. nov. Synema suteri Dahl, 1907 is regarded as a junior synonym of C. ambara (L. Koch 1893). All previously described species are redescribed to a modern standard and sexes for some species are described for the first time. Three new species are described. Photographs of adults and diagnostic genitalic characters are included, as are diagnostic keys and updated synonymic, geographic and biological information. Overall, this study indicates that New Zealand thomisids appear to have split from their Australian relatives some 5-6 million years ago and taken in concert with the recent establishment of two Australian stephanopine species, it appears that dispersal to New Zealand by Australian colonists and subsequent radiation into endemic New Zealand forms is a plausible explanation for the current state of the fauna. Genetic and morphological data are mutually supporting and in concert have helped inform the first taxonomic revision ever undertaken for this family in New Zealand.</p>


2020 ◽  
pp. 515-576
Author(s):  
Frank Bungartz ◽  
Ulrik Søchting ◽  
Ulf Arup

The lichen family Teloschistaceae from the Galapagos is revised. Most of the species belong to the Caloplacoideae, two to Teloschistoideae and a few to Xanthorioideae, three subfamilies not validly published, which is remedied here. Four different datasets were analyzed using Bayesian inference. For the bulk of the species, a combined dataset of nrITS, nrLSU and mrSSU was analyzed. Additionally, three analyses were performed using nrITS to further investigate phylogenetic relationships within and between species in each subfamily, and in the genera Xanthomendoza and Squamulea. Four new genera are described: Lacrima, Oceanoplaca, Phaeoplaca, Sucioplaca. Twenty-four species are reported, of which ten are new to science: Caloplaca nigra, Lacrima galapagoensis, Oceanoplaca chemoisidiosa, O. sideritoides, Phaeoplaca tortuca, Squamulea chelonia, S. humboldtiana, S. osseophila, S. oceanica, and Xanthomendoza leoncita. Several new combinations are proposed and three species of Xanthomendoza are reduced to synonymy. Several new combinations and species placed into synonymy do not occur in the Galapagos, but are treated as a consequence of our taxonomic revision. Morphology, anatomy, secondary chemistry, distribution and molecular phylogenetic affiliation are presented for each species and a key is provided. Eight different chemical patterns are quantitatively described based on HPLC analyses. The new genus Lacrima includes L. galapagoensis, a species without vegetative propagules, and two densely isidiate species, L. epiphora and L. aphanotripta that are morphologically similar to ‘Caloplaca’ wrightii. The only species of Galapagos Teloschistaceae that contains xanthones is placed into Huneckia. Oceanoplaca includes two species with the new anthraquinone isidiosin, O. isidiosa and O. chemoisidiosa, while a third species, O. sideritoides, does not contain this secondary metabolite. Phaeoplaca camptidia has previously been reported from Galapagos, but our phylogenetic analysis suggests that it is a new species, here named P. tortuca. An isolated position is occupied by ‘Caloplaca’ diplacia, which we place in it its own monotypic genus Sucioplaca. Some Galapagos Teloschistaceae can be considered a ‘residue’ of unresolved Caloplaca s.l., i.e. the corticolous C. floridana is possibly related to the saxicolous C. nigra, while C. cupulifera can currently not be placed. Squamulea remains particularly problematic and includes S. phyllidizans, that is nested among otherwise unresolved Squamulea species. Based on molecular data, S. phyllidizans is close to ‘Huriella’. ‘Huriella’ flakusii, described from Peru, is confirmed to occur in the Galapagos and the genus is reduced to synonymy with Squamulea. The Squamulea squamosa/subsoluta group remains largely unresolved, but the new species S. chelonia, S. humboldtiana, S. oceanica, and S. osseophila are phylogenetically distinct. Foliose Teloschistaceae are represented only by one species, described as Xanthomendoza leoncita, while the only fruticose species, Teloschistes chrysophthalmus and T. flavicans, are cosmopolitan.


Zootaxa ◽  
2020 ◽  
Vol 4747 (1) ◽  
pp. 77-112 ◽  
Author(s):  
LUIS M. P. CERÍACO ◽  
MATTHEW P. HEINICKE ◽  
KELLY L. PARKER ◽  
MARIANA P. MARQUES ◽  
AARON M. BAUER

The genus Panaspis in Angola is represented by four species, most of them part of taxonomically and nomenclaturally challenging species-complexes. We present a taxonomic revision of the group in the region and describe one new species, Panaspis mocamedensis sp. nov., endemic to the lowland areas of the Namibe province, southwestern Angola. Phylogenetic analysis using a combination of mitochondrial (16S, cytb) and nucleares (RAG1, PDC) markers, as well as morphological and meristic data support the recognition of the new species. In addition, these data support the presence of nominotypical Panaspis cabindae, P. wahlbergi and P. maculicollis in Angola. Reexamination of the Angolan population of P. breviceps was based on morphological analysis, as no molecular data from Angola is available for this species. According to our results, this population likely represents the nominotypical form, but due to its complex taxonomic and nomenclatural history and the lack of molecular data, this population needs to be reconsidered when molecular data become available. The description of a new species and revision of the Angolan Panaspis contributes to a better understanding of the true species richness of the Angolan herpetofauna, as well as to understanding the major biogeographic patterns of the region. A key to Angolan Panaspis species is also presented. 


2020 ◽  
Vol 40 (4) ◽  
pp. 425-434
Author(s):  
Ingrid C Marçal ◽  
Fernanda P Páez ◽  
Lenice Souza-Shibatta ◽  
Silvia H Sofia ◽  
Gustavo M Teixeira

Abstract Aegla lata Bond-Buckup & Buckup, 1994 is considered extinct in the type locality. New populations of this species, however, have been found in northern Paraná state, Brazil. We revised the taxonomy of A. lata based on morphological data obtained from the type material and specimens recently obtained from streams of the Tibagi River sub-basin, Paranapanema River basin, Upper Paraná Ecoregion. Moreover, Aegla jacutingan. sp. is described and illustrated. The new species resembles A. lata in the shapes of the body and chelipeds. Both species are nevertheless separated by particular morphological characters of the carapace, chelipeds, and epimeron as well as by molecular (COI mtDNA) differences. Both species can be distinguished from their congeners based on morphological and molecular evidence.


Sign in / Sign up

Export Citation Format

Share Document