phylogenetic revision
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0241098
Author(s):  
Prateek Dey ◽  
Sanjeev Kumar Sharma ◽  
Indrani Sarkar ◽  
Swapna Devi Ray ◽  
Padmanabhan Pramod ◽  
...  

Psittacula cyanocephala is an endemic parakeet from the Indian sub-continent that is widespread in the illegal bird trade. Previous studies on Psittacula parakeets have highlighted taxonomic ambiguities, warranting studies to resolve the issues. Since the mitochondrial genome provides useful information concerning the species evolution and phylogenetics, we sequenced the complete mitogenome of P. cyanocephala using NGS, validated 38.86% of the mitogenome using Sanger Sequencing and compared it with other available whole mitogenomes of Psittacula. The complete mitogenome of the species was 16814 bp in length with 54.08% AT composition. P. cyanocephala mitogenome comprises of 13 protein-coding genes, 2 rRNAs and 22 tRNAs. P. cyanocephala mitogenome organization was consistent with other Psittacula mitogenomes. Comparative codon usage analysis indicated the role of natural selection on Psittacula mitogenomes. Strong purifying selection pressure was observed maximum on nad1 and nad4l genes. The mitochondrial control region of all Psittacula species displayed the ancestral avian CR gene order. Phylogenetic analyses revealed the Psittacula genus as paraphyletic nature, containing at least 4 groups of species within the same genus, suggesting its taxonomic reconsideration. Our results provide useful information for developing forensic tests to control the illegal trade of the species and scientific basis for phylogenetic revision of the genus Psittacula.


2021 ◽  
Vol 12 ◽  
Author(s):  
Terje Klemetsen ◽  
Christian R. Karlsen ◽  
Nils P. Willassen

Genus Aliivibrio is known to harbor species exhibiting bioluminescence as well as pathogenic behavior affecting the fish farming industry. Current phylogenetic understanding of Aliivibrio has largely remained dormant after reclassification disentangled it from the Vibrio genus in 2007. There is growing evidence of wider diversity, but until now the lack of genomes and selective use of type strains have limited the ability to compare and classify strains firmly. In this study, a total of 143 bacterial strains, including 51 novel sequenced strains, were used to strengthen phylogenetic relationships in Aliivibrio by exploring intra-species and inter-species relations. Multilocus sequence analysis (MLSA), applying the six housekeeping genes 16S ribosomal RNA (rRNA), gapA, gyrB, pyrH, recA, and rpoA, inferred 12 clades and a singular branch in Aliivibrio. Along with four new phylogenetic clades, the MLSA resolved prior inconsistencies circumscribing Aliivibrio wodanis and formed a unique clade we propose as the novel species Aliivibrio sp. “friggae.” Furthermore, phylogenetic assessment of individual marker genes showed gyrB, pyrH, and recA superior to the 16S rRNA gene, resolving accurately for most species clades in Aliivibrio. In this study, we provide a robust phylogenetic groundwork for Aliivibrio as a reference point to classification of species.


Mycologia ◽  
2021 ◽  
pp. 1-22
Author(s):  
Karina Wilk ◽  
Maciej Pabijan ◽  
Marta Saługa ◽  
Ester Gaya ◽  
Robert Lücking

2020 ◽  
pp. 515-576
Author(s):  
Frank Bungartz ◽  
Ulrik Søchting ◽  
Ulf Arup

The lichen family Teloschistaceae from the Galapagos is revised. Most of the species belong to the Caloplacoideae, two to Teloschistoideae and a few to Xanthorioideae, three subfamilies not validly published, which is remedied here. Four different datasets were analyzed using Bayesian inference. For the bulk of the species, a combined dataset of nrITS, nrLSU and mrSSU was analyzed. Additionally, three analyses were performed using nrITS to further investigate phylogenetic relationships within and between species in each subfamily, and in the genera Xanthomendoza and Squamulea. Four new genera are described: Lacrima, Oceanoplaca, Phaeoplaca, Sucioplaca. Twenty-four species are reported, of which ten are new to science: Caloplaca nigra, Lacrima galapagoensis, Oceanoplaca chemoisidiosa, O. sideritoides, Phaeoplaca tortuca, Squamulea chelonia, S. humboldtiana, S. osseophila, S. oceanica, and Xanthomendoza leoncita. Several new combinations are proposed and three species of Xanthomendoza are reduced to synonymy. Several new combinations and species placed into synonymy do not occur in the Galapagos, but are treated as a consequence of our taxonomic revision. Morphology, anatomy, secondary chemistry, distribution and molecular phylogenetic affiliation are presented for each species and a key is provided. Eight different chemical patterns are quantitatively described based on HPLC analyses. The new genus Lacrima includes L. galapagoensis, a species without vegetative propagules, and two densely isidiate species, L. epiphora and L. aphanotripta that are morphologically similar to ‘Caloplaca’ wrightii. The only species of Galapagos Teloschistaceae that contains xanthones is placed into Huneckia. Oceanoplaca includes two species with the new anthraquinone isidiosin, O. isidiosa and O. chemoisidiosa, while a third species, O. sideritoides, does not contain this secondary metabolite. Phaeoplaca camptidia has previously been reported from Galapagos, but our phylogenetic analysis suggests that it is a new species, here named P. tortuca. An isolated position is occupied by ‘Caloplaca’ diplacia, which we place in it its own monotypic genus Sucioplaca. Some Galapagos Teloschistaceae can be considered a ‘residue’ of unresolved Caloplaca s.l., i.e. the corticolous C. floridana is possibly related to the saxicolous C. nigra, while C. cupulifera can currently not be placed. Squamulea remains particularly problematic and includes S. phyllidizans, that is nested among otherwise unresolved Squamulea species. Based on molecular data, S. phyllidizans is close to ‘Huriella’. ‘Huriella’ flakusii, described from Peru, is confirmed to occur in the Galapagos and the genus is reduced to synonymy with Squamulea. The Squamulea squamosa/subsoluta group remains largely unresolved, but the new species S. chelonia, S. humboldtiana, S. oceanica, and S. osseophila are phylogenetically distinct. Foliose Teloschistaceae are represented only by one species, described as Xanthomendoza leoncita, while the only fruticose species, Teloschistes chrysophthalmus and T. flavicans, are cosmopolitan.


Author(s):  
Anastasiia A Lunina ◽  
Dmitry N Kulagin ◽  
Alexander L Vereshchaka

Abstract The shrimp genera Ephyrina, Meningodora and Notostomus have an unusual carapace strengthened with carinae and a half-serrated mandible, which may suggest a possible monophyly of this group. Here we test this hypothesis and present the first phylogenetic study of these genera based on 95 morphological characters (all valid species coded) and six molecular markers (71% of valid species sequenced). Representatives of all genera of Oplophoridae (sister to Acanthephyridae) were outgroups, 32 species belonging to all genera and potentially different clades of Acanthephyridae were ingroups. Both morphological and molecular analyses retrieve trees with similar topology. Our results reject the hypothesis of a clade formed by Ephyrina + Meningodora + Notostomus. We show that Ephyrina and Notostomus are monophyletic, both on morphological and on molecular trees, Meningodora gains support only on morphological trees. Evolutionary traits in the Ephyrina and Meningodora + Notostomus clades are different. Synapomorphies are mostly linked to adaptations to forward motion in Ephyrina (oar-like meri and ischia of pereopods, stempost-like rostrum) and to progressive strengthening of the carapace and pleon in Meningodora and Notostomus (net of sharp carinae). Unusual mandibles evolved in the clades independently and represent convergent adaptations to feeding on gelatinous organisms.


2020 ◽  
Author(s):  
Prateek Dey ◽  
Sanjeev Kumar Sharma ◽  
Indrani Sarkar ◽  
Swapna Devi Ray ◽  
Padmnabhan Pramod ◽  
...  

AbstractPsittacula cyanocephala is a parakeet endemic to the Indian sub-continent, widespread in the illegal bird trade. Previous studies on Psittacula parakeets have highlighted taxonomic ambiguities, warranting further studies to resolve such issues. Since the mitochondrial genome provides useful information about a species concerning its evolution and phylogenetics, we sequenced the complete mitogenome of P. cyanocephala using NGS, validated 38.86% of the mitogenome using Sanger Sequencing and compared it with other available whole mitogenomes of Psittacula. The complete mitogenome of the species was 16814 bp in length with 54.08% AT composition. P. cyanocephala mitogenome comprises of 13 protein-coding genes, 2 rRNAs and 22 tRNAs. P. cyanocephala mitogenome organization was consistent with other Psittacula mitogenomes. Comparative codon usage analysis indicated the role of natural selection on Psittacula mitogenomes. Strong purifying selection pressure was observed maximum on nad1 and nad4l genes. The mitochondrial control region of all Psittacula species displayed the ancestral avian CR gene order. Phylogenetic analyses revealed the Psittacula genus as paraphyletic nature, containing at least 4 groups of species within the same genus, suggesting its taxonomic reconsideration. Our results provide useful information for developing forensic tests to control the illegal trade of the species, scientific basis for phylogenetic revision of genus Psittacula.


2020 ◽  
Vol 12 (12) ◽  
pp. 2258-2266
Author(s):  
David M Emms ◽  
Steven Kelly

Abstract Orthobench is the standard benchmark to assess the accuracy of orthogroup inference methods. It contains 70 expert-curated reference orthogroups (RefOGs) that span the Bilateria and cover a range of different challenges for orthogroup inference. Here, we leveraged improvements in tree inference algorithms and computational resources to reinterrogate these RefOGs and carry out an extensive phylogenetic delineation of their composition. This phylogenetic revision altered the membership of 31 of the 70 RefOGs, with 24 subject to extensive revision and 7 that required minor changes. We further used these revised and updated RefOGs to provide an assessment of the orthogroup inference accuracy of widely used orthogroup inference methods. Finally, we provide an open-source benchmarking suite to support the future development and use of the Orthobench benchmark.


2020 ◽  
Author(s):  
Mark Hershkovitz

For more than 30 years, Montiaceae specialists have agreed that Australian species classified in Calandrinia Kunth pertain to a distinct and divergent lineage whose oldest validly published name is Rumicastrum Ulbrich. In 1998, more than half of accepted species were transferred erroneously to a new genus, Parakeelya Hershk. However, taxonomists and databases have continued to classify the species in Calandrinia, confounding the taxonomy of the latter. Here, 65 Australian species classified in Calandrinia are transferred to Rumicastrum. This consummates the phylogenetic revision of Montiaceae taxonomy initiated more 30 years ago.


2020 ◽  
Author(s):  
D.M. Emms ◽  
S. Kelly

AbstractOrthobench is the standard benchmark to assess the accuracy of orthogroup inference methods. It contains 70 expert curated reference orthogroups (RefOGs) that span the Bilateria and cover a range of different challenges for orthogroup inference. Here we leveraged improvements in tree inference algorithms and computational resources to re-interrogate these RefOGs and carry out an extensive phylogenetic delineation of their composition. This phylogenetic revision altered the membership of 31 of the 70 RefOGs, with 24 subject to extensive revision and a further 7 that required minor changes. We further used these revised and updated RefOGs to provide an assessment of the orthogroup inference accuracy of widely used orthogroup inference methods. Finally, we provide an open-source benchmarking suite to support the future development and use of the Orthobench benchmark.Significance statementOrthogroup inference forms the foundation of comparative genomic analysis. Benchmarks to evaluate performance are essential to enable these methods to be compared and stimulate further method development. Here we present an update to the orthobench benchmark database and provide a comparative performance evaluation of commonly used orthogroup inference methods.


Sign in / Sign up

Export Citation Format

Share Document