Integrative taxonomy reveals remarkable diversity in Australian Protomiltogramma (Diptera: Sarcophagidae)

Zootaxa ◽  
2021 ◽  
Vol 5043 (1) ◽  
pp. 1-104
Author(s):  
NIKOLAS P. JOHNSTON ◽  
JAMES F. WALLMAN ◽  
KRZYSZTOF SZPILA ◽  
THOMAS PAPE

Protomiltogramma Townsend is the largest and most diverse genus of miltogrammine flesh flies in Australia. However, no comprehensive taxonomic work had been completed on the Australian members of this genus in almost a century. This study presents the first taxonomic revision of all Australian species of Protomiltogramma (Sarcophagidae: Miltogramminae), completed using an integrative approach combining molecular and morphological data. Eight new species endemic to Australia are described: P. dalbiensis sp. n., P. grandis sp. n., P. incana sp. n., P. kapnos sp. n., P. nigrisensa sp. n., P. popularis sp. n., P. rubra sp. n. and P. subtilis sp. n. In addition, P. australis Malloch, 1930 is synonymised with P. cincta Townsend, 1916, syn. n. and P. mallochi Verves, 1987 is synonymised with P. laticeps Malloch, 1930, syn. n. Molecular phylogenetics is used to place the Australian Protomiltogramma among the miltogrammine genera of the world.  

2020 ◽  
Vol 4 (6) ◽  
Author(s):  
Nikolas P Johnston ◽  
James F Wallman ◽  
Thomas Pape

Abstract A taxonomic revision of all Australian species of Metopia Meigen (Sarcophagidae: Miltogramminae) is completed using an integrated approach combining molecular and morphological data. Metopia nudibasis (Malloch) is redescribed as a species complex and a new endemic Australian species, Metopia sputnik sp. n., is described. Evidence is presented that Metopia sauteri (Townsend) is absent from Australia and this species is therefore removed from the known Australian fauna. Molecular phylogenetics is used to reconstruct interspecific and generic relationships and support morphology-based species hypotheses. Phylogenetic analysis splits Metopia Meigen into two clades, separated by Aenigmetopia Malloch, rendering the former genus nonmonophyletic. The implications of this are discussed.


2020 ◽  
Vol 722 ◽  
pp. 75-96 ◽  
Author(s):  
Nikolas P. Johnston ◽  
James F. Wallman ◽  
Mark Dowton ◽  
Krzysztof Szpila ◽  
Thomas Pape

A taxonomic revision of the Australian species of Amobia Robineau-Desvoidy, 1830 (Diptera: Sarcophagidae: Miltogramminae) is completed using an integrated approach combining four molecular loci (three mitochondrial, COI, ND4 and CYTB; one nuclear, EF1α) and morphological data. A new species, Amobia (s. str.) serpenta sp. nov., endemic to Australia, is described, and Amobia auriceps (Baranov, 1935) and Amobia burnsi (Malloch, 1930) are re-described. Molecular data are used to reconstruct inter-specific and generic relationships and support morphological species hypotheses. Phylogenetic analysis places all three Australian Amobia species together with Amobia signata (Meigen, 1824) (a Palaearctic species) in a single clade sister to Senotainia Macquart, 1846 (in part), which is in agreement with previous phylogenetic studies of the Miltogramminae. In addition to the description of species and molecular phylogenetics, general host associations for the Australian species of Amobia are discussed and evidence for the synonymisation of A. pelopei (Rondani, 1859) and A. auriceps is refuted.


2020 ◽  
Author(s):  
Nikolas P. Johnston ◽  
James F. Wallman ◽  
Krzysztof Szpila ◽  
Thomas Pape

Aenigmetopia Malloch is the only endemic genus of miltogrammine flesh flies (Diptera:Sarcophagidae) in Australia and, until now it has been known from a single species, A. fergusoni Malloch. This study constitutes the first comprehensive taxonomic revision of Aenigmetopia. Four new species, Aenigmetopia amissa, sp. nov., A. corona, sp. nov., A. kryptos, sp. nov. and A. pagoni, sp. nov., are described through the integration of molecular and morphological data and characters for genus- and species-level diagnoses are given. Aenigmetopia is included in a molecular phylogenetic analysis for the first time and the genus emerges as the sister taxon to Metopia Meigen, in agreement with morphological evidence.


2021 ◽  
Author(s):  
◽  
Phil J. Sirvid

<p>The New Zealand Thomisidae (crab spiders) are represented in New Zealand by two subfamilies (Stephanopinae and Thomisinae) and were used as a model group to test two competing theories on the origins of the New Zealand spider fauna. The New Zealand thomisids are also given their first full taxonomic revision. The two origin models essentially represent species radiations following recent dispersal or ancient vicariance events. Modern distribution data suggested that the stephanopines are poor dispersers and may provide evidence demonstrating a long period of separation from Australia; while in contrast, thomisines are known to be excellent dispersers. Maximum Likelihood and Bayesian analyses of cytochrome c suboxidase subunit I (COI), 28S ribosomal RNA (28S), histone H3 (H3), NADH dehyrogenase 1 (ND1) data and a combined genetic dataset was undertaken. Results indicate New Zealand stephanopines and thomisines form distinct endemic groups separate from sampled Australian species and appear to have separated from them around 5-6 million years ago. Additionally, genetic data from this study showed i) colour variations are not indicative of cryptic species; ii) previously described species are genetically distinct; iii) several suspected new species are also genetically distinct; iv) the relatively recent establishment of two Australian stephanopines and the occurrence of similar COI haplotypes in disjunct locations suggest that the dispersal ability of stephanopines is greater than previously thought and that radiation following colonization from Australia is a plausible explanation for the current diversity of the New Zealand thomisid biota. The taxonomic revision raises the number of described species from eight to eleven based on a combination of morphological and genetic data. In the stephanopines, Bryantymella Gen. nov. is erected to contain the type species Bryantymella angularis (Urquhart, 1885) comb. nov. as well as B. angulata (Urquhart, 1885) comb. nov., B. thorini sp. nov. and B. brevirostris sp. nov. Two Australian species, Sidymella longipes (Koch, 1874) and S. trapezia (Koch, 1874), are also recorded for New Zealand. Sidymella benhami (Hogg, 1910) is considered to be a junior synonym of Bryantymella angulata (Urquhart, 1885). In the thomisines, all species are now included in the previously monotypic genus Cymbachina Bryant, 1933. The genus now encompasses the type species C. albobrunnea (Urquhart, 1893), C. ambara (Urquhart, 1885) comb. nov., C. albolimbata (L. Koch, 1893) comb. nov., C. sphaeroides (Urquhart, 1885) comb. nov. and D. urquharti sp. nov. Synema suteri Dahl, 1907 is regarded as a junior synonym of C. ambara (L. Koch 1893). All previously described species are redescribed to a modern standard and sexes for some species are described for the first time. Three new species are described. Photographs of adults and diagnostic genitalic characters are included, as are diagnostic keys and updated synonymic, geographic and biological information. Overall, this study indicates that New Zealand thomisids appear to have split from their Australian relatives some 5-6 million years ago and taken in concert with the recent establishment of two Australian stephanopine species, it appears that dispersal to New Zealand by Australian colonists and subsequent radiation into endemic New Zealand forms is a plausible explanation for the current state of the fauna. Genetic and morphological data are mutually supporting and in concert have helped inform the first taxonomic revision ever undertaken for this family in New Zealand.</p>


2021 ◽  
Author(s):  
◽  
Phil J. Sirvid

<p>The New Zealand Thomisidae (crab spiders) are represented in New Zealand by two subfamilies (Stephanopinae and Thomisinae) and were used as a model group to test two competing theories on the origins of the New Zealand spider fauna. The New Zealand thomisids are also given their first full taxonomic revision. The two origin models essentially represent species radiations following recent dispersal or ancient vicariance events. Modern distribution data suggested that the stephanopines are poor dispersers and may provide evidence demonstrating a long period of separation from Australia; while in contrast, thomisines are known to be excellent dispersers. Maximum Likelihood and Bayesian analyses of cytochrome c suboxidase subunit I (COI), 28S ribosomal RNA (28S), histone H3 (H3), NADH dehyrogenase 1 (ND1) data and a combined genetic dataset was undertaken. Results indicate New Zealand stephanopines and thomisines form distinct endemic groups separate from sampled Australian species and appear to have separated from them around 5-6 million years ago. Additionally, genetic data from this study showed i) colour variations are not indicative of cryptic species; ii) previously described species are genetically distinct; iii) several suspected new species are also genetically distinct; iv) the relatively recent establishment of two Australian stephanopines and the occurrence of similar COI haplotypes in disjunct locations suggest that the dispersal ability of stephanopines is greater than previously thought and that radiation following colonization from Australia is a plausible explanation for the current diversity of the New Zealand thomisid biota. The taxonomic revision raises the number of described species from eight to eleven based on a combination of morphological and genetic data. In the stephanopines, Bryantymella Gen. nov. is erected to contain the type species Bryantymella angularis (Urquhart, 1885) comb. nov. as well as B. angulata (Urquhart, 1885) comb. nov., B. thorini sp. nov. and B. brevirostris sp. nov. Two Australian species, Sidymella longipes (Koch, 1874) and S. trapezia (Koch, 1874), are also recorded for New Zealand. Sidymella benhami (Hogg, 1910) is considered to be a junior synonym of Bryantymella angulata (Urquhart, 1885). In the thomisines, all species are now included in the previously monotypic genus Cymbachina Bryant, 1933. The genus now encompasses the type species C. albobrunnea (Urquhart, 1893), C. ambara (Urquhart, 1885) comb. nov., C. albolimbata (L. Koch, 1893) comb. nov., C. sphaeroides (Urquhart, 1885) comb. nov. and D. urquharti sp. nov. Synema suteri Dahl, 1907 is regarded as a junior synonym of C. ambara (L. Koch 1893). All previously described species are redescribed to a modern standard and sexes for some species are described for the first time. Three new species are described. Photographs of adults and diagnostic genitalic characters are included, as are diagnostic keys and updated synonymic, geographic and biological information. Overall, this study indicates that New Zealand thomisids appear to have split from their Australian relatives some 5-6 million years ago and taken in concert with the recent establishment of two Australian stephanopine species, it appears that dispersal to New Zealand by Australian colonists and subsequent radiation into endemic New Zealand forms is a plausible explanation for the current state of the fauna. Genetic and morphological data are mutually supporting and in concert have helped inform the first taxonomic revision ever undertaken for this family in New Zealand.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edoardo Massa ◽  
Roberto Guidetti ◽  
Michele Cesari ◽  
Lorena Rebecchi ◽  
K. Ingemar Jönsson

AbstractKristianstads Vattenrike Biosphere Reserve [KVBR] is a UNESCO designated area of Sweden possessing high biological value. Although several studies on tardigrades inhabiting Sweden have been performed, the KVBR area has been neglected. The current study investigates the tardigrade fauna of five areas of the biosphere reserve and includes 34 samples of different substrates analysed quantitatively and qualitatively. In total, 33 species of tardigrades were found in the samples, including 22 new records for the Skåne region, 15 new records for Sweden, and four species new to science. Mesobiotus emiliae sp. nov., Xerobiotus gretae sp. nov., Itaquascon magnussoni sp. nov., and Thulinius gustavi sp. nov. were described with an integrative approach (when possible) using morphological characters (light, electron scanning, and confocal laser scanning microscopies) and molecular markers (ITS2, 18S, 28S, cox1). A new protocol to increase morphological data was developed recovering mounted specimens within old slides for SEM analysis. Emended diagnoses for the genus Itaquascon and the transfer of Platicrista itaquasconoide to the genus Meplitumen are proposed. This study enriches the knowledge of the tardigrade biodiversity both within the KVBR and in Sweden and contributes to the rapidly increasing number of tardigrade species reported worldwide. The 33 species identified in the KVBR area represents 28% of all water bear species found in Sweden so far. The restricted study areas and limited number of samples collected suggests that the KVBR is very rich of tardigrades.


Zootaxa ◽  
2021 ◽  
Vol 4985 (2) ◽  
Author(s):  
QIFAN ZHU ◽  
CHRIS LOONEY ◽  
TIANLIN CHEN ◽  
VÍCTOR CUESTA-PORTA ◽  
LÁSZLÓ ZOLTÁN ◽  
...  

A new species, Diplolepis valtonyci Zhu, Wang & Pujade-Villar sp. nova, is described from Rosa rugosa Thunb. (1784) and R. davurica Pall. (1788) from China using an integrative approach based on molecular and morphological data. Diagnosis, distribution, and biology of the new species are given and illustrated. The phylogenetic relationship between D. valtonyci sp. nova and other Diplolepis species are assessed based on COI and Cytb genes. A key to the Chinese species of Diplolepis is provided.


2015 ◽  
Vol 84 (4) ◽  
pp. 285-304 ◽  
Author(s):  
Zorica Nedeljković ◽  
Jelena Ačanski ◽  
Mihajla Đan ◽  
Dragana Obreht-Vidaković ◽  
Antonio Ricarte ◽  
...  

Integrative taxonomy tests the validity of taxa using methods additional to traditional morphology. The existence of two different morphotypes in specimens identified as Chrysotoxum vernale Loew (Diptera: Syrphidae) prompted their taxonomic study using an integrative approach that included morphology, wing and male-surstylus geometric morphometrics, genetic and ecological analyses. As a result, a new species is recognised, Chrysotoxum montanum Nedeljković & Vujić sp. nov., and C. vernale is re-defined. A lectotype and paralectotypes are designated for C. vernale to stabilize this concept. An additional species, Chrysotoxum orthostylum Vujić sp. nov., with distinctive male genitalia is also described. The three species share an antenna with the basoflagellomere shorter than the scape plus pedicel and terga with yellow fasciae not reaching the lateral margins. This study confirms the value of integrative approach for resolving species boundaries.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 160 ◽  
Author(s):  
Jelisaveta Čkrkić ◽  
Andjeljko Petrović ◽  
Korana Kocić ◽  
Milana Mitrović ◽  
Nickolas G. Kavallieratos ◽  
...  

Members of the Monoctonina subtribe have long been neglected in applied studies of the subfamily Aphidiinae, due to their low economic importance, as they do not parasitize pests of cultivated plants. Consequently, data about this group are scarce, including its taxonomy and phylogeny. In the present study, we explore inter- and intraspecific genetic variation of Monoctonina species, including genera Monoctonus Haliday 1833, Monoctonia Starý 1962, Falciconus Mackauer 1959 and Harkeria Cameron 1900. We employ two molecular markers, the barcode region of the mitochondrial cytochrome c oxidase subunit I (COI) and the D2 region of the 28S nuclear gene (28S rDNA), to analyze genetic structuring and phylogeny of all available Monoctonina species, and combine them with morphological data for an integrative approach. We report one new species, and three potentially new species which can be formally described when further specimens are available. Analysis of phylogenetic relationships within the subtribe shows a basal position for the genera Falciconus and Monoctonia, and the close relatedness of Harkeria and Monoctonus.


Mycoscience ◽  
2012 ◽  
Vol 53 (6) ◽  
pp. 433-445 ◽  
Author(s):  
Tetsuhiro Matsuzawa ◽  
Reiko Tanaka ◽  
Yoshikazu Horie ◽  
Yan Hui ◽  
Paride Abliz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document